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APPENDIX B:  Ramsey-Boiteux Pricing 

The previous Section highlighted that even if the regulator allows the utility to 

recover the long-run costs attributable to the service, there still remains the problem of 

recovering the common costs of production.  In the absence of the regulator allowing 

the utility to perfectly price discriminate or charge multi-part tariffs, economics has 

established that the most efficient way to recover such costs is through allowing 

prices to be set in accordance with the Ramsey-Boiteux (R-B) pricing principles.  This 

ensures that the common costs can be recovered, while minimising the overall 

efficiency loss associated with distorting price away from the long-run marginal cost 

of production.  While the rule appears in a number of different guises, in its simplest 

and most commonly stated form — i.e. where there are no cross-price effects — it 

involves setting the price of good or service i so that the lower (higher) the own-price 

elasticity of demand εi is, where
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proportionate mark-up that is required in price Pi from the marginal cost of production 

MCi.2  Where superscript R denotes the outcomes under the R-B price and the term λ 

represents what is sometimes referred to as the “Ramsey Number”, the textbook R-B 

(or inverse-elasticity) price is often formally written as satisfying the condition: 
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This Section provides a detailed analysis of R-B pricing.  In particular it examines: 

 

(i) the origins of R-B pricing;  

 
                                                 
1   The negative sign on the own-price elasticity term means that it will be a positive number throughout the analysis in 

Appendix B. 

2  As the analysis here examines the outcome in the long-run, all references to marginal cost should be taken to mean the long-

run marginal cost of production.  That is, the marginal cost that includes compensation for the opportunity cost of capital. 
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(ii) the intuition underlying R-B pricing; 

 

(iii) how to derive R-B prices.  This examines the case when:  

(a) there are no cross-price effects; and 

(b) there are cross-price effects; 

 

(iv) how it applies to access pricing regulation;  

 

(v) network externalities and how to derive R-B prices in the presence of a 

network externality; and 

 

(vi) how to derive R-B prices with linear or constant elasticity demand. 
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B.1 The Origins of R-B Pricing 

R-B pricing derives its origins from the work by Ramsey (1927) and Boiteux (1956),3 

who established similar results from addressing different economic problems.  

Ramsey’s seminal paper on taxation investigated how to minimise the loss in 

consumer surplus when raising a given amount of tax revenue using distortionary 

taxes.  As he states in the introduction to the paper (p 47): 

The problem I propose to tackle is this:  a given revenue is to be raised 
by proportionate taxes on some or all uses of income, the taxes on 
different uses being possibly at different rates; how should these rates 
be adjusted in order that the decrement of utility may be a minimum? 

 

Boiteux meanwhile examined the socially optimal price for a public enterprise 

monopoly when marginal-cost pricing fails to provide cost recovery.  As he noted in 

the introduction (p 219), his paper was 

…left with the problem of determining how to amend the marginal 
cost pricing rule when the firm is subjected to a budgetary condition 
incompatible with the decision rule.4   

 

Hence the name “Ramsey-Boiteux” pricing in the context of utility pricing 

acknowledges the work of Ramsey, who established the initial rule (i.e. the “Ramsey 

Rule” for taxation), and Boiteux, who independently derived the same result in the 

context of cost recovery for a public utility. 

 
Ramsey illustrated in his paper (at p 54) that in order to raise an infinitesimal amount 

of tax revenue, the optimal distortionary taxes should be set so as to “diminish the 

production of all commodities in the same proportion” [emphasis in original].  

Therefore, where 0
iQ  denotes the quantity of good i demanded in the pristine state 

when there are no distortionary taxes, the above rule implies that for n goods: 

                                                 
3  F.P. Ramsey, “A Contribution to the Theory of Taxation”, Economic Journal 37, 1927, pp 47-61. 

4  M. Boiteux, “Sur la Gestion des Monopoles Publics Astrient á L'Equilibre Budgetaire”, Econometrica 24, 1956, pp 22-40.  

As the original article is in French, W. J. Baumol and D.F. Bradford had the paper translated into English, and the citation 

for this is:  M. Boiteux “On the Management of Public Monopolies Subject to Budgetary Constraints”, Journal of Economic 

Theory 3, 1971, pp 219-40.  The emphasis in the above quote is in the original paper. 
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Ramsey found that with linear demand the above relationship would hold for any 

given level of tax revenue raised by the government, and where the demand for goods 

was independent, it translated into a requirement that commodities with the least 

elastic demand should be taxed proportionately the most. 

 

Using an economy-wide model Boiteux established similar results to Ramsey.  By 

also adopting the consumer and producer surplus method and assuming independent 

demands, Boiteux showed the now familiar result that for each good or service i, the 

relative divergence between the price and marginal cost should be proportional to the 

inverse elasticity of demand for good or service i.  Curiously, because Boiteux 

incorrectly defined the elasticity of demand as the proportionate change in price with 

respect to a proportionate change in quantity (i.e. 
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The relative divergence between price and marginal cost should be 
proportionate to the elasticity of the good considered.  [Emphasis in 
original]. 

 

Using the notation developed earlier in this section he therefore concluded that the 

divergence of price from marginal cost should satisfy the following: 
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However, Boiteux still correctly maintains that the principle is consistent with 

traditional policy of taxing markets more heavily with less elastic demand. 

 

The Baumol and Bradford (1970) paper explicitly relates the welfare economics 

literature on the theory of second best with the more specialised analysis on the theory 
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of taxation and public utility regulation.5  In doing so they are the first to link the 

results of Ramsey and Boiteux.  Further, in summarising the literature, the authors (at 

p 268) provide four variants on the theorem of the optimal departure from marginal 

cost-based prices.  Whilst variants three and four outlined by Baumol and Bradford 

are the familiar inverse-elasticity and equi-proportionate reduction in output rules, the 

authors also illustrate that at the second-best price: 

 

(i) the ratio of the change in profit in market i — where profit is denoted by 

the term π — resulting from an infinitesimal change in price for any good 

or service i, must be equal to the ratio of the resulting levels of output (i.e. 
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(ii) where there are no cross-price effects, the deviation of price from the long-

run marginal cost for any good or service i is proportional to difference 

between marginal cost and marginal revenue for service i (i.e. 

( )( )iii
R
i MCMRα1MCP −+=− , i = 1, 2…n and  0 < α < 1). 

 

The R-B pricing formula has also been extended to incorporate more complex retail 

pricing problems.  For example, Braeutigam (1979) examines the optimal linear price 

for a natural monopoly given the existence of a competitive fringe,6 while Brock and 

Dechert (1985) investigate the optimal R-B price in an inter-temporal setting.7  

                                                 
5  R.G. Lipsey and K. Lancaster, “The General Theory of Second Best”, Review of Economic Studies 24, 1956-7, pp 11-32, 

coined the phrase “second-best efficiency”.  Their theory of second best was based around finding an efficient price in a 

market, given that there was an existing distortion in a related market.  Specifically, they examined the optimal price that 

should be charged for a public utility’s output, where it was a substitute for a product provided by a private monopoly.  

However, more recently, the term second-best efficiency has also been used to describe instances where the best possible 

outcome for society is achieved given there is some existing distortion yet no related market effects.   An example of this 

more liberal usage of the term is found in the context of public utility pricing where a marginal-cost-based price fails to 

recover cost.   The term second best is often used to describe an R-B price, as it represents the linear pricing regime that 

maximises efficiency, given that there is some revenue requirement placed upon the firm preventing a first-best outcome.   

6  R.R Braeutigam, “Optimal Pricing with Intermodal Competition”, American Economic Review 69, 1979, pp 38-49. 

7  W.A. Brock and W.D. Dechert, “Dynamic Ramsey Pricing”, International Economic Review 26, 1985, pp 569-91. 
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Further, Laffont and Tirole (1994)8 and Armstrong, Doyle and Vickers (1996)9, have 

established that the optimal linear access price for a network requiring recovery of its 

common costs, should be based on R-B pricing principles. 

                                                 
8  J-J. Laffont and J. Tirole, “Access Pricing and Competition”, European Economic Review 38, 1994, pp 1673-1710. 

9  M. Armstrong, C. Doyle and J. Vickers, “The Access Pricing Problem:  A Synthesis”, Journal of Industrial Economics 44, 

1996, pp 131-50. 
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B.2 The Intuition Underlying R-B Pricing 

As outlined in Section B.1, in its simplest guise, R-B pricing requires that in order to 

recover the common costs of production with least impact on social welfare or 

efficiency, the proportionate mark up in price from the marginal cost must be higher 

in the relatively more inelastic market.  Roughly the intuition underlying this inverse 

elasticity rule can be outlined with the assistance of the diagram in Figure B.1.   

 

In Figure B.1 it is assumed for simplicity that there are two services Q1 and Q2,10 

which are produced under the same constant long-run marginal cost of production 

MC, and the quantities of each product can be measured along the same horizontal 

axis.11  In the two markets there are the respective Hicksian or compensated demand 

curves D1 and D2,12 and at the initial long-run marginal-cost-based price P* in each 

market the same efficient level of output Q* is consumed.  Imagine that there is now 

an increase in price to P′.  From the diagram it is apparent that for this given price 

increase, the compensated level of demand in market 2 where there is a relatively 

more elastic demand curve, will decrease by more than the compensated level of 

demand in market 1 (i.e. 12 QQ ′<′ ).  As the lost value to consumers in market 1 from 

decreasing output from 1Q′  to Q* is equal to area 1
*QbcQ ′ , and the additional cost to 

society of producing these units is only 1
*QdcQ ′ , there is an overall efficiency loss of 

area bcd.  Meanwhile, in market 2, as the lost value to consumers from decreasing the 

service from 2Q′  to Q* is 2
*QacQ ′ , and the additional cost to society of producing these 

units is 2
*QecQ ′ , there is a greater efficiency loss of ace.   

                                                 
10  As the paper addresses telecommunications, it is more appropriate to use the term services throughout, rather than goods. 

11  A similar assumption is made in S. Berg and J. Tschirhart, Natural Monopoly Regulation, Cambridge University Press, 

1988, p 59.  Implicitly the assumption is that the products in the two markets are homogenous.   

12  Throughout the analysis in this and the following Section it is assumed that the demand curves are Hicksian demand curves 

that hold utility constant, rather than Marshall-Dupuit demand curves that hold income constant.  This assumption is made, 

because, although Hicksian demands do not generally capture actual quantities consumed in the market — unless the 

consumer’s utility is assumed to be quasi-linear — they provide a true measure of the change in utility to the consumer for 

any given price change and reflect the consumer’s marginal willingness to pay.  The Hicksian demand curve is also 

sometimes referred to as the compensated demand curve.   
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FIGURE B.1 ILLUSTRATING THE INTUITION UNDERLYING R-B PRICING 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

The result highlights that in this particular instance where there is a uniform price 

increase across both markets, there will be a greater distortion away from the efficient 

level of consumption Q* in the market where demand is relatively more elastic, and 

subsequently a greater efficiency loss.  Therefore, a government aiming to maximise 

welfare whilst raising a given amount of tax revenue — or alternatively a regulator 

aiming to maximise welfare whilst ensuring that a firm’s common costs are recovered 

— will, rather than charging a uniform price above marginal cost, want to charge a 

higher price in market 1 than market 2.  That is, there should be a higher proportional 

mark-up in price above the long-run marginal cost in market 1 where demand is 

relatively more inelastic.13 

 

While the previous example roughly illustrates why the proportionate mark up in 

price above long-run marginal cost should be higher in the market where demand is 

more inelastic, it does not clearly show why it is not optimal for all common costs to 

be recovered from the market with the more inelastic demand.  The reason why it is 

optimal to allocate common costs across all markets — i.e. price needs to be above 

                                                 
13  Of course in this simple example the higher proportionate mark up is equivalent to a higher absolute mark up in price. 
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the long-run marginal cost in all markets — can be highlighted using an example 

incorporating the diagrams in Figure B.2. 

FIGURE B.2 RECOVERING COMMON COSTS  
 

 

        

 

 

 

 

 

 

 

 

In Figure B.2, the common cost CC — i.e. the cost that cannot be directly attributed to 

the provision of either good 1 or good 2 — is captured by area acdP0
1 .  Significantly, 

it is assumed throughout the analysis in this paper that if the firm were to charge the 

unregulated monopoly price in each market — m
1P  and m

2P  — it would over-recover 

the common cost of production.  Further, the assumption made here is that there are 

no cross-price effects (i.e. 0
P
Q

j

i =
∂
∂ ) and that initially the regulator: 

 constrains the firm to earning zero profit across both markets; and 

 

 only allows the unattributable cost CC to be recovered in market 1 where 

demand is relatively inelastic compared to demand in market 2.   

 

The price in market 1 will then be set at 0
1P , where the compensated level of demand 

is 0
1Q , whilst market 2 yields the long-run marginal cost-based price of 0

2P , and a 

level of demand 0
2Q .  As there is no welfare loss in market 2 the resulting inefficiency 

from recovering the costs solely from market 1 is equal to area abc. 
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FIGURE B.3 WELFARE GAIN FROM PRICE REBALANCING 
 

 

        

 

 

 

 

 

 

 

 

In this setting it can be shown that there will be a welfare gain if the regulator allows 

the firm to recover the common costs of production by decreasing the price by a small 

amount in market 1 and increasing the price by a small amount in market 2.  The 

outcome is illustrated in Figure B.3 where for an infinitesimal price decrease in 

market 1 and a corresponding infinitesimal price increase in market 2, the resulting 

marginal welfare change is positive.  That is, there is a marginal welfare gain in 

market 1 of area aefc, yet no corresponding marginal deadweight-loss in market 2.  

This marginal welfare change is formally captured by the following equation: 
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Hence, to maximise welfare across the two markets, prices should rebalance until the 

marginal welfare gain in market 1 equals the marginal deadweight-loss in market 2.    

 

The above analysis highlights that at the R-B prices (i.e. welfare-maximising linear 

prices) two conditions must be satisfied.  That is: 

 

(i) The marginal change in profit must be zero i.e. dπ = 0.  This ensures 

that when price decreases in market 1 and increases in market 2, the firm 

still earns enough revenue across both markets to cover the common or 

unattributable cost of production CC.  Note, it is important to recognise 
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here that if the zero profit assumption were not made, and the firm initially 

earns a given level of rent — i.e. π , where 0π >  — then the firm would 

instead be rebalancing prices so as to ensure that its revenues still 

recovered the common cost of production CC plus the allowed level of 

profit π ; and 

 

(ii) The marginal change in welfare must be zero i.e. dW = 0.  This 

maximises the overall welfare gain from price rebalancing, and in this 

instance involves equating the marginal welfare gain in market 1 with the 

marginal deadweight-loss in market 2.  Such an outcome is illustrated in 

Figure B.4.   

FIGURE B.4 THE OUTCOME AT THE WELFARE-MAXIMISING R-B PRICES 
 

 

        

 

 

 

 

 

 

 

 

Using conditions (i) and (ii) and the example outlined in Figure B.2, the standard 

formula for the R-B prices with and without cross-price effects for two services is 

derived in the following Section. 
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B.3 Deriving the R-B Price 

Where the utility provides n services and there is a common cost of production of CC, 

the resulting profit is captured by the equation, 

∑
=

−−=
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1i
iii CC)QMC(Pπ     (B.5) 

and the marginal change in profit will be, 
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While the equation for the marginal change in welfare was outlined in the previous 

section where it was assumed there were two goods and no cross-price effects, more 

generally where there are n services, this marginal welfare change is written as, 
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Therefore, when there are only two services under consideration, the following 

relationship must hold at the welfare-maximising R-B prices, R
iP , i = 1,2: 
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The above two equations can be used to derive R-B prices when there is unrelated 

demand (i.e. no cross-price effects) and interrelated demand (i.e. there are cross-price 

effects) for the products. 
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B.3.1 The R-B Price with No Cross-Price Effects 
 

When there are no cross-price effects, a change in the price of service j will have no 

effect on the demand for service i, i.e. 0PQ ji =∂∂ , and i
i

i
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= , i = 1,2.  

Substituting this outcome into equations (B.8a) and (B.8b) and rearranging yields:  
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Equating (B.9a) and (B.9b) and cross-multiplying the terms gives, 
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As the own-price elasticity of demand for good i at the R-B prices is R
i
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the above equation can be simplified to give, 
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Where there are n goods, the R-B price in equation (B.10) can be written in the more 

general form outlined in equation (B.2), 
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The above outcome can then be equated to some constant λ, and the familiar inverse-

elasticity formulation for the R-B price outlined in equation (B.1) obtained.  
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The resulting R-B prices outlined in equation (B.10) are depicted in Figure B.5.  In 

the diagrams the shaded green area captures the deadweight-loss from the distorting 

quantity away from the efficient level of out in each market *
1Q  and *

2Q . 

FIGURE B.5 THE OUTCOME AT THE WELFARE-MAXIMISING R-B PRICES 
 

 

        

 

 

 

 

 

 

 

 

The intuition for why the value of λ must lie between 0 and 1 is as follows.  If λ were 

equal to zero then the price in each market would just be equal to the long-run 

marginal cost of production (i.e. Pi = MCi).  However, this outcome cannot arise 

because it requires that there are no common costs of production in the first place (i.e. 

CC = 0).  Meanwhile, if λ were equal to one, then the utility would be charging the 

unregulated monopoly price for each service i (i.e. m
i

m
ii

m
i 1/ε)/PMC(P =− ).  However, 

such third-degree monopoly price discrimination is not possible, because in Section 

B.2 the assumption was made that the regulated firm is subject to a zero profit 

constraint, and that an unregulated monopoly price leads to the firm over-recovering 

its common cost of production.   

 

Note that if instead of a zero profit constraint, some positive level of positive profits 

are allowed (i.e. 0π > ), then as outlined by Braeutigam (1980), the same pricing 

structure arises across the services.14  The resulting prices, however, will now be 
                                                 
14  R.R. Braeutigam, “An Analysis of Fully Distributed Cost Pricing in Regulated Industries”, Bell Journal of Economics 11, 

1980, pp 182-96.  See p 189, footnote 14, and p 193, footnote 17. 
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higher, as they are required to not only efficiently allocate the common costs of 

production, but also the allowed rents across each service.  The charges are now 

effectively the welfare-maximising prices for the given level of common costs and 

profit that the firm is allowed to earn.  Importantly, the higher mark-up in price above 

marginal cost means that there is also a lower level of welfare or efficiency compared 

to the instance when zero economic profits are allowed.  Further, although in the 

example used here the R-B price for each service always lies below the unregulated 

monopoly price, the structure of pricing across markets is identical to that which 

would arise under third-degree price discrimination of consumers by the monopoly.  

Joskow (2005) makes this point, stating (at p 80) that,15 

…the structure, though not the level, of the Ramsey-Boiteux prices is 
the same as the prices that would be charged by an unregulated 
monopoly with an opportunity to engage in third-degree price 
discrimination. 

 

This highlights that R-B price is a form of price discrimination, and if any firm were 

to voluntarily set R-B prices it must have some form of existing market power to do 

so. 

 

To see that the outcome in equation (B.10) is also consistent with the equi-

proportionate reduction rule outlined in equation (B.4) for infinitesimal amount of 

common cost CC, it is necessary to recognise that: 

 

 the infinitesimal price rise associated with recovering an infinitesimal 

common cost is just )MC(PdP iii −= ;  
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15  P. Joskow, “Regulation of Natural Monopolies”, forthcoming in Handbook of Law and Economics, A.M. Polinsky and S. 

Shavell (eds.), Elsvier Science B.V, 2005.  Draft available at:  http://econ-www.mit.edu/faculty/download_pdf.php?id=1086. 
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 for an infinitesimal common cost the corresponding price and quantity for 

good i, will be approximated by the long marginal cost-based price 0
1P  and 

long-run marginal cost-based quantity 0
1Q . 

 

Substituting the information outlined above, equation (B.10) simplifies to the 

expression: 
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B.3.2 The R-B Price with Cross-Price Effects 
 

If the demand for goods is interrelated then it implies that a change in the price of 

some good j will have an impact on the demand for good i, or mathematically that 

0PQ ji ≠∂∂ .  Therefore, the change in quantity for any good i, dQi, will now be 

equal to,  
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Where the two goods are substitutes, an increase in the price of good j will lead to an 

increase in demand for good i — i.e. 0PQ ji >∂∂  — while if the two goods are 

complements, an increase in the price of good j will lead to a decrease in demand for 

good i — i.e. 0PQ ji <∂∂ .   The own-price and cross-price effects of increasing price 

above marginal cost to recover a common cost are highlighted in Figure B.6 where it 

is assumed that the two goods — 1 and 2 — are substitutes. 
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The own-price effect (i.e. i
i

i dP
P
Q
∂
∂ ) implies that there is a movement along the 

existing demand curve.  In Figure B.6, the price increase from the long-run marginal 

cost-based price of *
iP  to 1

iP , i = 1,2, results in a fall in demand in each market from 

*
iQ  to iQ′ , i = 1,2.  The cross-price effect (i.e. j

j

i
i dP

P
QdQ
∂
∂

= ) leads to a shift in the 

demand curve at the given prices.  As the two goods in Figure B.6 are substitutes, 

there will be an increase in the demand for each good as a result of an increase in the 

price of the other good.  This is reflected by a rightward shift in each demand curve 

from )P(D *
ji  to )P(D R

ji , i,j = 1,2 and  i ≠ j.  Therefore, at prices 1
iP , i = 1,2, the 

cross-price effect results in demand for each good increasing from iQ′  to 1
iQ , i =1,2. 

FIGURE B.6 THE OUTCOME WITH CROSS-PRICE EFFECTS 
 

 

        

 

 

 

 

 

 

 

 

If it is assumed that the terms 1
1P  and 1

2P  in Figure B.6 represent the R-B prices 

derived in Section B.3.1 where there were no cross-price effects (i.e. 0PQ ji =∂∂ ), 

then it is apparent from the diagram that the existence of positive cross-price effects 

leads to the firm recovering additional revenues equal to the blue rectangular areas in 

markets 1 and 2.  Therefore, at what were previously the R-B prices there will now be 

over-recovery of the common costs of production CC.  This implies that where the 

two goods are substitutes, the R-B prices consistent with common cost recovery will 
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be lower than those derived in the previous Section, and where the two goods are 

complements the R-B prices must be higher than those derived in Section B.3.1. 

 

Rather than examining the movements along and shifts out of the Hicksian demand 

curve, it also possible to highlight the effects of simultaneously increasing the price 

above marginal cost, by tracing out the path or loci of the Hicksian demand curves for 

all the above-cost prices up until price 1
iP , i = 1,2.  The resulting curve is a general-

equilibrium adjustment schedule (GEAS), which can be used to measure the 

efficiency change in a general-equilibrium setting.16  In Figure B.6 the bold red line 

depicts the GEAS in both markets and the resulting deadweight-loss is captured by 

the green-shaded triangles underneath the GEAS curves.  By again assuming that 1
iP , 

i = 1,2, denotes the R-B prices derived when there are no cross-price effects, it is 

evident from the diagram that when the two goods are substitutes (complements), not 

only is there a greater (smaller) amount of tax revenue at prices 1
iP , i = 1,2, but there 

will also be a smaller (larger) deadweight-loss.   

 

To derive the condition that the R-B price must satisfy when there are cross-price 

effects, equation (B.11) for dQi is substituted into equations (B.8a) and (B.8b).  This 

is solved in terms of dP2/dP1 to give, 

2
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As in the previous sub-section, by equating the outcomes in (B.12a) and (B.12b) and 

cross-multiplying the terms, 

 
                                                 
16   A.C. Harberger, Taxation and Welfare, Little, Brown and Company, Boston, 1974, p 88, effectively describes what is 

referred to as a GEAS here, stating that the efficiency impact of two or more distortions can be measured using the “loci...of 

potential equilibrium points, generated in principle by the package of distortions”.  He shows these loci in diagrams on p 87. 
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which can also be expressed as: 
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Recognising here that: 

 the own-price elasticity of demand for good i is 
i

i

i

i
i Q

P
P
Qε
∂
∂

−= ; 

 

 the cross-price elasticity of demand is
i

j

j

i
ij Q

P
P
Qε
∂
∂

−= ; and  

 

 the total revenue derived from good i is TRi = PiQi, i = 1,2; 

 

equation (B.13) can be simplified to give: 
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As the substitution matrix is symmetric (i.e. 
i

j

j

i

P
Q

P
Q

∂

∂
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∂
∂

),17 it follows that 
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17  This is the case for Hicksian demand curves or a Marshall-Dupuit demand where it assumed there is either quasi-linear or 

homothetic preferences.   
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This can be rearranged to give, 
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In the above equation the term (εi - εji), i,j = 1,2 and i ≠ j; is often referred to as the 

“superelasticity” of good i, as it captures the full output response as a result of a set of 

price changes.18  These superelasticity terms are also the relevant demand elasticities 

for the respective GEAS 1 and GEAS 2 curves in Figure B.6.  Denoting the 

superelasticity of good i by iε̂ , it follows that equation (B.15) can be written in terms 

of the standard inverse-elasticity formulation for R-B prices, 

 

R
i

R
i

i
R
i

ε̂
λ

P
)MC(P
=

−
, where jii

R
i εεε̂ −= ; i = 1,2; i ≠ j; & 0 < λ < 1 (B.16) 

 

From this formulation it is apparent that where there is a given amount of common 

cost that needs to be recovered CC, compared to the case where there are no cross-

price effects (i.e. ∂Qi/∂Pj = 0): 

 

 When the two goods are substitutes (i.e. ∂Qi/∂Pj > 0 and εij < 0), the R-B 

price will require a lower proportionate mark-up from the long-run 

marginal cost of production.  As the GEAS is relatively more inelastic than 

the Hicksian demand curve when the two goods are substitutes, any given 

price rise in the market will result in a smaller quantity distortion, leading to 

higher revenue and a lower deadweight-loss.  Therefore, a lower proportionate 

mark-up in each market is required to recover the common cost of production 

CC; and  

 

 When the two goods are complements (i.e. ∂Qi/∂Pj < 0 and εij > 0), the R-B 

price requires a higher proportionate mark-up from the long-run 

marginal cost of production.  As the GEAS is relatively more elastic than the 

                                                 
18   For example see S. Berg and J. Tschirhart, Natural Monopoly Regulation, Cambridge University Press, 1988, p 66. 
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Hicksian demand curve when the two goods are complements, any given price 

rise in the market will result in a greater quantity distortion, leading to lower 

revenue and a greater deadweight-loss.  Therefore, a higher proportionate 

mark-up in each market is required to recover the common cost of production 

CC. 

 

As in the previous Section it is possible to write this formulation of the R-B price with 

cross-price effects in the more general form where there are n goods and there is a 

relationship between goods i and j.  That is, 

 

R
i

R
i

i
R
i

ε̂
λ

P
)MC(P
=

−
, where jii

R
i εεε̂ −= ; i = 1,…n; i ≠ j; & 0 < λ < 1 (B.17) 
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B.4 Access Pricing Regulation:  Linking the Efficient Component 

Pricing Rule (ECPR) and R-B Pricing 

 

The analysis so far has only examined R-B pricing and its application to the retail 

prices of services.  The difficulty of translating such pricing principles to wholesale 

access-pricing regulation is that while the impact upon revenues in the access market 

can be observed, the welfare outcome can only be measured in the downstream retail 

market.  (This is highlighted by welfare equation (B.10)).  Therefore, in order to 

properly assess the efficiency impact of an access-pricing regime, simplifying 

assumptions have to be made that link the movement of the access and retail prices, 

and the quantity of access and output in the downstream retail market.  Such 

assumptions are made in the analysis done by Laffont and Tirole (1994) and 

Armstrong, Doyle and Vickers (ADV, 1996). 

 

Laffont and Tirole establish that where a vertical-integrated provider (VIP) is subject 

to some common network cost, the optimal way to recover this is to regulate the VIP 

so that it charges a Ramsey-Boiteux retail and access price.  Using a similar model, 

ADV illustrate a link between the R-B based access price derived by Laffont and 

Tirole and the controversial Efficient Component Pricing Rule (ECPR) proposed by 

Baumol and Willig.   

 

This sub-section briefly examines: 

 

(a) the controversy surrounding the ECPR; 

 

(b) the context in which the ECPR has been considered a second-best efficient 

access price; and  

 

(c) the optimal access pricing results of ADV and Laffont and Tirole. 
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B.4.1 The Controversial ECPR  
 

The ECPR — also sometimes referred to as the parity pricing principle or Baumol-

Willig (B-W) Rule in recognition of those responsible for its formulation19 — was 

promoted as an access-pricing regime that would induce efficient outcomes, whilst 

still ensuring that a VIP received fair compensation for the use of its essential 

infrastructure.   

 

Baumol and Sidak (1994a), summarise (at p 178) ECPR setting the access charge so 

that:20   

 

inputofunitaofsalethe
ofsupplierinputthetocostyopportunitthe

costincrmentalunitperdirectsinput'thepriceinputoptimal +=
    (B.18) 

while Pickford (1996) describes the ECPR as an access price “which would leave the 

incumbent indifferent as to whether it or the rival supplies the unit of final product”.21  

It is this property of “leaving the incumbent indifferent” that has been responsible for 

much of the controversy surrounding the rule, and led to a number of regulators 

explicitly rejecting it as a method for regulating access prices.   

 

To formally analyse the ECPR, the following simple framework is adopted where it is 

assumed that: 

 

1. the VIP is subject to Leontief production technology, such that for the 

incumbent and any entrant a unit of access to the essential facility q is 

necessary to produce exactly one unit of output in the final retail market Q (i.e. 

q = Q).   

                                                 
19   R.D. Willig, “The Theory of Network Access Pricing”, Issues in Public Utility Regulation, H. M. Trebing (ed), Michigan 

State University Public Utility Papers, 1979, and, W.J. Baumol, “Some Subtle Issues in Railroad Regulation”, International 

Journal of Transport Economics 10, 1983, pp 341-55. 

20  W. J. Baumol and J.G. Sidak, “The Pricing of Inputs Sold to Competitors”, Yale Journal on Regulation 11, 1994a, pp 171-

202. 

21  M. Pickford, “Pricing Access to Essential Facilities”, Agenda 3, 1996, pp 165-76. 
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2. it is not possible to bypass the incumbent’s infrastructure.  Access to the 

facility is an essential input that is required for an entrant to produce the final 

good sold in the retail market.  For each unit of access q supplied, a price of 

“a” is charged by the VIP;  

 

3. the marginal cost of the VIP supplying the final service is MCI, which is equal 

to the sum of the marginal cost of supplying access to itself cw and the 

marginal cost of retailing the service cI (i.e. MCI = cw + cI).   

 

4. the entrant faces a private marginal cost of production which is equal to 

amount it is charged for each unit of access a, and the marginal cost it faces of 

retailing each unit of the service cE (i.e. MCP = a + cE).  Depending upon the 

access price a, this may be greater than or equal to the social marginal cost of 

production faced by the entrant (i.e. MCE = cw + cE); 

 

5. there is a perfectly contestable market to provide the final service, so entry is 

an “all-or-nothing” affair and the entrant will supply a final product that is a 

perfect substitute for the incumbent’s.  Where successful entry does occur, the 

incumbent will choose to only supply access to its essential infrastructure.  

The entrant will then service the entire retail market supplying the same 

quantity as the incumbent 0
IQ , and charging the same fixed price as the 

incumbent of 0
IP , where I

0
I MCP > . 

 

 

Under these assumptions the ECPR-based access price aECPR outlined in equation 

(B.18) can mathematically be written as: 

 

( )I
0
Iw

ECPR MCPca −+=     (B.19) 
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From this equation it is evident that the ECPR links the access and retail price charged 

by the incumbent,22 and the difference between the retail price 0
IP  and the access 

charge ECPRa  (i.e. the margin ECPR0
I a-P ) is equal to the incumbent’s marginal cost of 

retailing the service in the contestable downstream activity cI (as wII c-MCc = ).  For 

this reason ADV state (at p 135) that the ECPR is also equivalent to a simple “Margin 

Rule”.  

 

Proponents of the ECPR, such as Baumol and Sidak (1994a, 1994b),23 emphasise that 

the access price creates incentives for production efficiency as it encourages the VIP 

to allow entry by a firm with a lower marginal cost of retailing the service than its 

own.   To see this note that under ECPR the incumbent will be indifferent between 

providing the final product in the retail market and essential access in the wholesale 

market, as assuming there are no common costs of production here, the VIPs overall 

profit will remain unchanged, i.e. ( ) ( ) 0
Iw

ECPR0
II

0
II QcaQMCPπ −=−= .  For a 

competitor though entry will only occur if at the same price-quantity combination the 

VIP is able to earn positive profit.  In order to achieve positive profit, an entrant must 

have a lower marginal cost of retailing the service than the incumbent (i.e. 

( ) ( ) ( ) EI
0
IEI

0
IE

ECPR0
I

0
Ip

0
IE cciff.0,QccQcaPQMCPπ >>−=−−=−= ).  

  

Critics of ECPR have questioned its definition of “opportunity cost”.  While there is 

no doubt that compensation is required for the direct marginal cost of providing 

access to the entrant cw, including compensation for the marginal loss in profit from 

the incumbent no longer serving the downstream market ( I
0
I MCP − ), seems more 

difficult to justify.  For example, if initially the VIP were an unregulated monopoly, 

the ECPR would define any lost monopoly rents resulting from deregulation and 

competition as a marginal cost of production that the access seeker should compensate 

the access provider for.  This creative redefinition of opportunity costs means that the 

                                                 
22  J-J Laffont and J. Tirole, Competition in Telecommunications, MIT Press, Cambridge, 2000, p 119, refers to ECPR as a 

“partial (incomplete) regulatory rule that links retail and wholesale prices.” 

23   W.J. Baumol and J.G. Sidak, Towards Competition in Local Telephony, MIT Press, Cambridge, 1994b. 
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ECPR-based access price cannot guarantee allocatively efficient outcomes for the 

industry.24 

 

B.4.2 The ECPR as a Second-Best Efficient Access Price  
 

ADV illustrate that the ECPR-based access price, as summarised by Baumol and 

Sidak, is consistent with a second-best efficient outcome when there is initially an 

irremovable distortion or inefficiency in the retail market served by the incumbent 

firm.  Armstrong (2002) outlines (at p 299) that the price charged by the incumbent PI 

may be inefficiently distorted away from the marginal cost MCI, because of such 

things as:25 

 

(a) having to fund the common costs of providing the service; or  

 

(b) being required to use profits obtained in one market to cross-subsidise another 

— e.g. geographically uniform retail tariffs.   

 

 

To highlight the second-best efficiency of the ECPR-based access price, ADV use a 

more general framework to that outlined by Baumol and Sidak, which formed the 

basis for the analysis done in Section B.4.1.  Thus, to capture the results of ADV, 

assumptions 1 to 4 are adopted, but assumption number 5 in Section B.4.1 — which 

relates to perfect contestability — is relaxed here.  Instead, this is replaced by the 

assumption that: 

 

5′. the VIP, which is subject to a common cost of CC, competes in the 

downstream retail market with a competitive fringe. 

 

The assumption of the competitive fringe, implies that:  

                                                 
24  W.B. Tye, “The Pricing of Inputs Sold to Competitors: A Response”, Yale Journal on Regulation 19, 1994, pp 203-24. 

25  M. Armstrong, “The Theory of Access Pricing and Interconnection”, Handbook of Telecommunications Economics, Volume 

1, M.E. Cave, S.K. Majumdar and I. Vogelsang (eds.), Elsevier Science B.V, 2002. 
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 now possible for a number of firms to have entered the market;  

 

 entry does not occur on an “all-or-nothing” basis, so the VIP can now 

simultaneously supply both access qE to entrants and output QI to the retail 

market;  

 

 entrants are price takers, so each unit of output QE will be priced at PE, 

which is equal to the private marginal cost of production faced by these 

firms MCP = a + cE.  The difference between the retail price and the social 

marginal cost of production is therefore equal to the difference between the 

access price and the marginal cost of supplying the wholesale access service 

(i.e. PE – MCE = a – cw).  Further, as the marginal cost of retailing the 

service for entrants cE is constant, it follows that dPE = da, and as q = Q, it 

implies that a/QP/Q EEE ∂∂=∂∂ , a/QP/Q IEI ∂∂=∂∂ , and that dQE = dqE; and 

 

 the output supplied by entrants QE is a substitute for the product supplied by 

the incumbent QI. 

 

In addition to assumption 5′, a further assumption made for expositional purposes 

here is that: 

 

6. the VIP is initially able to recover the common costs of its network CC, when 

it charges a retail market price of 0
IP  that exceeds its long-run marginal cost 

MCI, and charges a regulated cost-based access price of a0 = cw.   

  

 

Using the assumptions 1 – 4, 5′ and 6, the initial outcome in this market, where there 

is a marginal cost-based access price, is illustrated in Figure B.8.   

 

The diagram shows that in the retail market served by the VIP, at price 0
IP  the 

common cost of the network acdP0
I  is recovered and the efficiency loss from 

distorting price away from the long-run marginal cost is equal to the green-shaded 
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triangle area abc.   As initially the regulator requires access to be priced at the 

marginal cost of using the infrastructure (i.e. a = cw), the entrant’s price 0
EP  is equal to 

the social marginal cost of production MCE and there is no production or allocative 

inefficiency in the competitive fringe.  The assumption that a unit of access q is 

required to produce a unit of output Q, means that the level of output produced 0
EQ  

also represents the level of access supplied by the VIP to the competitive fringe. 

FIGURE B.8 THE MARGINAL COST-BASED ACCESS PRICE 

 

 

        

 

 

 

 

 

While there is production and allocative efficiency in the competitive fringe when the 

regulator sets the access price equal cw, the overall level of welfare is not maximised.  

This can be highlighted by examining the marginal welfare change resulting from a 

marginal increase in the regulated access charge a.   

 

A marginal increase in the access charge translates into a marginal increase in the 

retail price in the competitive fringe (i.e. da = dPE and a/QP/Q IEI ∂∂=∂∂ ), and as the 

VIP’s and entrant’s products are substitutes, at the given price 0
IP , there will be a 

marginal increase in the quantity of output demanded QI (i.e. dQI > 0).  As the price 
0
IP , which the consumer equates its marginal value to, exceeds the marginal cost MCI, 

the marginal increase in quantity will generate a marginal welfare gain in the market 

served by the VIP of ( ) II
0
I dQMCP −  > 0.  Figure B.9 captures this marginal welfare 

gain by the vertical grey-shaded sliver aefc.  As there is no corresponding marginal 

deadweight-loss in market 2, because the cost-based regulated access price implies 
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that 0
EP  is equal to MCE, there must overall be a positive marginal welfare change.  

Formally, this result is captured by the following equation: 

 

( ){ ( ){

da
a

QdQ andda
a

QdQ where

0,dQMCPdQMCPdW

E
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  (B.20) 

FIGURE B.9 THE MARGINAL COST-BASED ACCESS PRICE 

 

 

        

 

 

 

 

  

The outcome that a price above marginal cost in the competitive fringe leads to a 

higher level of welfare is consistent with the rule of second best outlined by Lipsey 

and Lancaster (1956-57).26  This states that where there is an existing irremovable 

distortion in a market, it may not be optimal to set price equal to marginal cost in the 

related market.  In the example outlined here, increasing the regulated access price 

above the marginal cost of providing access — and subsequently increasing the retail 

price above the social marginal cost in the competitive fringe — involves trading off a 

Harberger (1971) rectangle welfare gain in the retail market served by the VIP,27 with 

a standard deadweight-loss triangle in the competitive fringe served by entrants.  This 

is highlighted in Figure B.10 for some arbitrary set regulated access price a′ > cw. 

                                                 
26  R.G. Lipsey and K. Lancaster, “The General Theory of Second Best”, Review of Economic Studies 24, 1956-7, pp 11-32. 

27  A. Harberger, “Three Basic Postulates for Applied Welfare Economics:  An Interpretative Essay”, Journal of Economic 

Literature 9, 1971, pp 785-97. 
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FIGURE B.10 THE MARGINAL COST-BASED ACCESS PRICE 

 

 

        

 

 

 

 

 

The right-hand side diagram illustrates that the access price a′ leads to firms in the 

competitive fringe facing a private marginal cost and charging a retail price of 

PE CMP ′=′ = a′ + cE.    This exceeds the social marginal cost of production 

EWE ccMC += .  The result is an allocative inefficiency equal to the green-shaded 

triangle ijk and a production inefficiency equal to area 0
EEikPP′ .  However, as the 

production inefficiency is simply equal to the increase in profit earned by the VIP 

from providing access, there is no deadweight-loss associated with it.   

 

The left-hand side diagram highlights that the increase in the regulated access price 

also has an effect upon the level of demand for the VIP’s product.  As the output of 

the competitive fringe and incumbent are substitutes, the decrease in demand for the 

entrants’ product is offset by some increase in the level of demand for the VIP’s 

product at the distorted price 0
IP .  This is reflected by the rightward shift in the 

demand curve from )(PD 0
EI  to )P(D EI ′ , which leads to an increase in welfare — or 

alternatively an increase in profit to the VIP from supplying the retail service — of 

aghc.   

 

To maximise welfare given the irremovable inefficiency in the VIP’s retail market, 

the regulator must maximise the difference between the Harberger rectangle welfare 

gain and the standard deadweight-loss triangle in the competitive fringe.  This is 

achieved by setting the access price to equate the marginal welfare gain with the 
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marginal deadweight-loss.  Hence, the second-best efficient access price a* must 

satisfy the condition: 

( ) ( ) 0dQMCPdQMCPdW EE
*
EII

0
I =−+−= , where E

**
E caP +=  (B.21) 

 

Substituting in for *
EP , MCE, dQI and dQE in the above equation, gives the expression, 
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Solving this in terms of a* yields,  
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and it follows that that retail price for services supplied by the competitive fringe will 

be, 
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The second-best access price in equation (B.22) appears consistent with the condition 

stated by Baumol and Sidak in their summary of the ECPR.  That is, 

 

 the term cw is the direct (marginal) cost of supplying access; and  

 

 the term ( )I
0
Ia MCPσ −  represents the (marginal) opportunity cost of the VIP 

supplying a unit of access and no longer serving some portion of the retail 

market.   

 

ADV refer (at p 139) to σa in equation (B.22) as the “displacement ratio”, as it 

captures the rate of substitution by consumers between the service supplied by the 

VIP and entrant for a small change in the access price.28  Where the products are 

                                                 
28  ADV derive a similar outcome to that given by equation (B.22), when they relax the assumption of no bypass.  The major 

difference is that the displacement ratio σIE involves a far more complex expression, as it captures not only the possibility of 

demand-side substitution, but also the possibility of supply-side substitution. 
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imperfect substitutes the value of σa lies between 0 and 1 (i.e. 0 < σa < 1).  In the 

special cases: 

 

 where there are no cross-price effects between the products (i.e. ∂QI/∂a = 0), 

σa is zero, and the second-best access price a* is just set equal to the direct 

(marginal) cost of supplying access cw.  Here, if the access price were raised 

above cw, the retail price would lie above the marginal cost in the competitive 

fringe and create a deadweight-loss triangle.  The increase in price however 

has no impact on the level of demand for the incumbent’s product at price 0
IP , 

so there is now no Harberger rectangle welfare gain offsetting the deadweight-

loss.  Consequently, pricing above the direct marginal cost of providing access 

in these circumstances is not second best as it generates an unambiguous 

welfare loss; and 

 

 where the two products are perfect substitutes (i.e. -∂QE/∂a = ∂QI/∂a), σa is 

equal to one, and the second-best access price a* simplifies to the Margin Rule 

often associated with ECPR, which was outlined in equation (B.19).   

 

The problem with the second-best efficiency of the ECPR is that precisely the same 

result is achieved if the initial rents to the incumbent are labelled an irremovable 

distortion.  The second-best efficiency of the ECPR does not by itself guarantee that 

the incumbent no longer earns monopoly profits.  The outcome relies on the regulator 

being able to accurately identify such things as all the relevant common costs of the 

VIP, and remove all unnecessary rents.  This is something that ADV and Armstrong 

implicitly assume away as a problem in their analysis.  Thus, the criticism of the 

ECPR initially highlighted by Tye still holds true, and where there are common costs, 

the optimal access price must not only be second best, but should also eradicate any 

rents accruing to the incumbent prior to entry taking place.  Such a regime ensures 

that the access provider earns a normal rate of return on the investment, because it 

correctly treats all above-normal profits as a removable inefficiency.  
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One problem the regulator obviously encounters in accurately identifying such costs 

is that it has limited information and is faced with an incumbent that has incentives to 

overstate its costs.  For instance, where the VIP is forced to fund some deficit that 

arises from another service, there is an incentive for the access-provider to overstate 

its losses so that it can increase the access price it charges and maintain its monopoly 

rent.  Pelcovits (1999) highlights such a problem when he outlines a debate that 

occurred in the US in 1993,29 over the appropriate level of the universal service 

obligation (USO).  In that case, the incumbent argued that it required US 20 billion 

dollars per year to cover the cost of the USO, while entrants argued that the cost was 

only US 3.7 billion dollars per year.  Although not of the same magnitude, there have 

been similar ongoing debates in Australia between Telstra and the regulator, the 

Australian Competition and Consumer Commission (ACCC), over the appropriate 

mark-up in access price that is required to meet the access deficit contribution (ADC).     

 

To see the problems created by inappropriately identifying the irremovable distortion, 

imagine that in the example outlined in this section, some portion of the initial 

distortion of the VIP’s price 0
IP  away from marginal cost MCI, consists of economic 

rents to the firm.  In this framework, given a displacement ratio of 0 < σa < 1, the 

incorrect classification of economic rents as part of an irremovable distortion, means 

that when the access price a is set above cw, the height of the Harberger rectangle is 

greater than it should otherwise be.  The increased height of the rectangle means that 

compared to the case where there is legitimate common cost recovery and no rents, 

there is a greater marginal welfare gain, which justifies a larger second-best access 

price a* and marginal deadweight-loss in the competitive fringe.  While the access 

price here maximises the relevant trade-offs, it should not be considered optimal, 

because it has failed to remove the unnecessary inefficiencies existing in the VIP’s 

market.  

 

                                                 
29  M.D. Pelcovits, “Application of Real Options Theory to TELRIC Models:  Real Trouble or Red Herring”, The New 

Investment Theory of Real Options and its Implications for Telecommunications Economics, Kluwer Academic Publishers, 

Boston, 1999. 
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Another crucial point to recognise about the regulated second-best access price a* 

derived in equation (B.22), was that the VIP was not subject to any profit constraint.  

Therefore, although overall welfare increased as the access price was distorted away 

from the marginal cost of supplying access, it was also the case that the VIP was able 

to increase its level of profit.  The result is highlighted in Figure B.11, where the 

increase in the access price from a0 to a* generates an increase in profit for the VIP of 

area 0
E

*
EikPP  in the access market and area aghc in the retail market.  As assumption 6 

established that at the initial retail market price 0
IP  and cost-based access price a0 the 

VIP earned zero profit, these areas must also represent the super-normal profit derived 

from charging the above-cost access price a*.     

FIGURE B.11 THE INCREASE IN PROFIT TO THE VIP 

 

 

        

 

 

 

 

 

While welfare and profit increased in the example outlined in this Section, the 

regulator would have achieved superior welfare outcomes, if it had been able to 

constrain the VIP to still earning zero profit.  That is, a higher overall level of welfare 

is obtained from rebalancing the access and retail prices, until prices are reached that 

simultaneously maximise welfare (i.e. dW = 0) and ensure profit remains unchanged 

(i.e. dπ = 0).30  As the reader will recognise from Section B.2, these two conditions 

                                                 
30   The model outlined in Section B.4.2 is similar to that often employed by Telstra to promote its economic arguments.  That is, 

Telstra often maintains that there are allocative efficiency gains from increasing an access charge, yet consistently fails to 

rebalance any of the existing prices to take into account that it was initially already earning a normal profit.  By neglecting 

the issue of price rebalancing, Telstra implicitly treats existing prices as if they are an irremovable inefficiency distortion, 

and is requesting an access charge that allows it to earn an above-normal profit.  Examples of where Telstra has used such 

arguments can be found in the context of its undertakings it has provided for the LSS. 
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are identical to those that must be satisfied to achieve the optimal R-B retail prices.  

Placing the analysis done earlier in the context of the model used here, it is possible to 

derive the optimal access and retail prices highlight the link established by ADV 

between ECPR and R-B pricing.   

 

B.4.3 Linking the ECPR with R-B Pricing 
 

In the framework outlined in Section B.4, the profit earned by the VIP is equal to the 

profits that it obtains from providing the downstream retail market and the upstream 

wholesale access service.  Hence, the expression for total profit is, 

CC)qc(a)QMC(Pπ EwIII −−+−=      

 

As it was assumed earlier that there is: 

 

 Leontief production technology, so that a unit of access is required to produce 

a unit of output QE = qE; and 

 

 a competitive fringe that sets price equal to the private marginal cost of 

production, (i.e. PE = a + cE, MCE = cw + cE, and PE – MCE = a – cw); 

 

the above expression for profit can be rewritten as, 

CC)QMC(P)QMC(Pπ EEEIII −−+−=     

 

Thus, the optimal prices in the retail market served by the VIP and the competitive 

fringe — *
IP  and *

EP   — must satisfy the following conditions:  
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                 where, j
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It is apparent that by replacing the subscripts 1 and 2 with I and E, and superscript R 

with *, the above two conditions are identical to those outlined in equations (B.8a) 
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and (B.8b) in Section B.3.  Consequently the optimal prices charged by the VIP and 

the competitive fringe will be R-B prices, and must satisfy the expression in equation 

(B.14), such that, 
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where, 
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Equating the outcome in (B.25) to the constant θ, where 0 < θ < 1, substituting in 

w
R ca −  for E

R
E MCP − , it is possible to derive expressions for the optimal access and 

retail price found by ADV.  That is, equation (B.25) can be broken up into the 

following two conditions, 
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These equations can also be expressed in the form, 
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As EIIE PQPQ ∂∂=∂∂ , the above two equations can be expressed in terms of the 

access and retail price as, 
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Rearranging and simplifying the above expressions, gives the R-B access and retail 

charges derived by ADV at pp 139-41 and Armstrong at p 322, 
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It follows from (B.28a) that the R-B retail price charged by the competitive fringe will 

then be, 
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As aQPQ IEI ∂∂=∂∂  and aQPQ EEE ∂∂=∂∂ , 
EPσ will be equal to aσ , and the 

outcome in equation (B.28a) can be rewritten as, 
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ADV and Armstrong outline that the optimal access charge is now a combination of 

the ECPR level plus a R-B mark-up.31  The reason that the R-B access charge is above 

the level specified by the ECPR — which applied for a given price 0
IP  — is that a 

higher access price raises more net revenue to cover the common cost of production, 

which allows the retail price charged by the VIP to be lowered.  

 

ADV (p 141), Armstrong (pp 322-3) and Laffont and Tirole (2000, p 103), outline 

that the access price in equations (B.28a) and (B.28b) are equivalent to the optimal 

prices for the access and retail price derived by Laffont and Tirole (1994).  To see this 

                                                 
31  ADV and Armstrong, both refer to this as a Ramsey mark-up, rather than a Ramsey-Boiteux mark-up. 
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for the access charge, substitute the expression for )MC-(P I
R
I  in (B.28b) into 

equation (B.28a) to give, 
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Collecting terms in the above equation so that, 
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Rearranging the above equation yields the optimal access price, 
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and using identical methodology the optimal retail price can be solved for,  
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= , i,j = I,E & i ≠ j; Laffont and Tirole (at p 1678) provide 

the following simplified expressions for the R-B access and retail charges,32 
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32  The difference between the term iη̂  used here, and that used by Laffont and Tirole at p 1678, arises due to the different 

expression for the cross-price elasticity.  Laffont and Tirole define the cross-price elasticity as )QP()PQ(ε ijjiij ∂∂= , 

while through the analysis here the cross-price elasticity has been set so that )QP()PQ(ε ijjiij ∂∂−= .  
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Laffont and Tirole (at p 1678) describe 
ijiji

jiijji
i
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i εεεε
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=  as a “superelasticty” term.  

The reason that it differs from the superelasticity term outlined in equation (B.17) is 

that the constant θ differs from the constant λ used in equation (B.17).  By instead 

using the term λ from equation (B.17), the R-B access and retail price charged by the 

VIP will be, 
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   where jii
R
i εεε̂ −= ; i = 1,…n & i ≠ j    

 

Before proceeding with a worked example, it is important to recognise that the ability 

to link the access price derived here with the R-B retail price in Section B.3, relied 

upon assumptions that allowed the changes in the access price and quantity of access 

demanded to be directly translated into changes in the retail price and quantity of the 

final product demanded, and subsequently, changes in overall welfare.  In particular, 

the two crucial assumptions made in this analysis — which were also made by 

Laffont and Tirole and ADV — were that: 

 

 the vertically-integrated provider (VIP) competes with and supplies access to a 

competitive fringe in the downstream retail market.  The competitive fringe 

prices on the basis of the private marginal cost it faces, which consists of the 

access price charged by the VIP and a given marginal cost of retailing the 

service (i.e. PE = MCP = a + cE), so any given change in the access price must 

be equal to a change retail price.   That is, there is one hundred per cent cost 

pass-through of any changes in the access price charged by the VIP to the 

retail price charged by the competitive fringe; and 

 

 the industry is subject to Leontief production technology, so a unit of demand 

for access by the competitive fringe in the wholesale market qE is exactly 

equal to a unit of output demanded in the final product market QE. 
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B.5 Deriving the R-B Pricing Relationship with Network Externalities 

 

In examining the efficient pricing of telecommunications services, economists — 

such as Squire (1973), Rohlfs (1979), Willig (1979), Brown and Sibley (1986), 

Mitchell and Vogelsang (1991), and Armstrong (2002)33 —  have identified the 

potential for two types of externalities to arise, the network externality and the call 

externality.  If these externalities cannot be properly internalised, then both will have 

an impact upon the efficient price that should be charged for an access and call 

service. 

 

B.5.1  Network Externalities 
 

Liebowitz and Margolis (2002)34 outline on p 76 that network externalities, or 

network effects as they are more appropriately described,35 arise because: 

                                                 
33  For example see:  L. Squire, “Some Aspects of Optimal Pricing for Telecommunications”, Bell Journal of Economics 4, pp 

515-25; J. Rohlfs, “Economically-Efficient Bell-System Pricing”, Bell Laboratory Discussion Papers No. 138, January 1979, 

pp 5-9; R. D. Willig, "The Theory of Network Access Pricing",  in H. Trebing (ed.), Issues in Public Utlilty Regulation, 

Michigan State University, East Lansing, 1979, pp 109-52; S.J. Brown and D.S. Sibley, The Theory of Public Utility Pricing, 

Cambridge University Press, 1986, pp 197-9; B.M. Mitchell  and I. Vogelsang, Telecommunications Pricing, Cambridge 

University Press, Cambridge, 1991, pp 55-61; M. Armstrong, “The Theory of Access Pricing and Interconnection”, 

Handbook of Telecommunications Economics, Volume 1, M.E. Cave, S.K. Majumdar and I. Vogelsang (eds.), Elsevier 

Science B.V., Amsterdam, 2002, pp 337-45.  

34  S.J. Liebowitz and S.E. Margolis, “Network Effects”, Handbook of Telecommunications Economics, Volume 1, M.E. Cave, 

S.K. Majumdar and I. Vogelsang (eds.), Elsevier Science B.V., Amsterdam, 2002.  

35  For example, see Liebowitz and Margolis (2002) at p 76-8, and S.J. Liebowitz and S.E. Margolis, “Network Externality:  An 

Uncommon Tragedy”, Journal of Economic Perspectives 8, 1994, pp 133-50.  Both papers draw a distinction between 

network externalities and network effects.  The authors maintain that while the term network externality is often used to 

describe how an existing consumers’ value is affected by a change in the size of the network, it is more appropriate to refer 

this as a network effect, as the term network externality should be reserved for only describing those instances where there is 

a market failure, or a network effect that is not being internalised in the market.  Liebowitz and Margolis (2002) state on pp 

77-8 that: 

The use of the term ‘externality’ to mean something different in this literature than it does in the rest of 
economics is likely to create confusion.  Unfortunately the term externality has sometimes been used 
carelessly in the networks literature. 

They note that although network participants are unlikely to internalise the impact that their joining the network has on 

existing subscribers, network owners may well internalise such effects.     
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As the number of users of a product or network increases, the value of 
the product or network to the other users changes. 

 

In the context of telecommunications, it means that each new subscriber to a 

telephone service increases the number of communication opportunities that are 

available to existing users of the network.  Rohlfs (1979) states at p 5 that it is “a 

classic case of an externality”, as existing users “benefit from actions taken and paid 

for by new users.”   

 

To illustrate how the existing subscribers’ values may be affected by the network size, 

the following simple example is used.  Imagine there are initially two subscribers A 

and B to a telecommunications network.  In this instance there will only be two 

possible call services that can be offered — A to B and B to A.  However, if a new 

subscriber C joins the network, there is the opportunity for six call services to be 

supplied — A to B, A to C, B to A, B to C, C to A, and C to B.  More generally, 

where there are N subscribers, there will be N×(N-1) possible call services that the 

network is able to supply, and each new subscriber creates the opportunity for an 

additional 2N call services.36   

 

As outlined in the above example, network externalities have an impact upon all 

existing subscribers to the network.  Due to this widespread impact it is often argued 

that network externalities are very difficult to internalise without some form of 

corrective pricing of the subscription service (i.e. the access service).  This is 

highlighted by Rohlfs (1979), who notes on p 5 that, because it involves many people, 

it “probably cannot be fully internalised without corrective pricing”, and that the 

“effect of such externalities is that the economically efficient price of access to the 

network is below marginal cost of access”.   

 

While emphasising the importance of network externalities and prescribing the need 

for a lower access price in their presence, Rohlfs (1979) recognises that they may be 

partially internalised in such instances where: 

 
                                                 
36  This example is an illustration of what has become known as “Metcalfe’s Law”.  For a discussion of Metcalfe’s Law see C. 

Shaprio and H.R. Varian, Information Rules, Harvard Business School Press, Boston, 1999, pp 183-4.  
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 a business subscribes to a telephone service to accommodate its customers,  

and the customer of the business benefits and pays for the service; and 

 

 an individual party subscribes to accommodate communication with friends 

and relatives, or a group of people agree to subscribe jointly to communicate 

with one another. 

 

 

In addition to the potential for this type of internalisation, a number of economists 

have also noted that at higher levels of subscription for fixed-line telephony voice in 

the US, the marginal network externality is likely to have diminished.  For example: 

 

 Mitchell (1978) outlines on p 518 that he chose to ignore network externalities 

in modelling the optimal US fixed-line telephony rates on the basis that, “they 

should have only a limited marginal effect on demand in a system with a high 

saturation of subscribers.”;37 

 

 Kahn and Shew (1987) states on p 242 that it may be the case that once 

subscription exceeds per cent, “marginal subscribers have come to consist 

disproportionately of people relatively isolated from society generally, to 

whose hypothetical addition to the network existing subscribers would impute 

progressively smaller values.”;38 and  

 

 Sidak and Spulber (1997) also highlight on p 548 that the significance of 

network externalities “become less important as more and more subscribers 

are connected to the network” and that in relation to the fixed-line voice 

telephony, “once subscription rises to more than 95 percent of all households, 

                                                 
37  B.M. Mitchell, “Optimal Pricing of Local Telephone Service”, American Economic Review 68, 1978, pp 517-37. 

38  A. E. Kahn and W. B. Shew, “Current Issues in Telecommunications Regulation:  Pricing”, Yale Journal on Regulation 4, 

1987, pp 191-256. 
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the remaining positive externalities that may be achieved on the margin surely 

become quite small.”39  

 

Econometric analysis by Iimi (2005) illustrates that there has been a similar pattern in 

relation to the significance of network externalities in the cellular phone market in 

Japan.40  By comparing his findings on the Japanese mobile market with those of 

Okada and Hatta (1999),41 Iimi concludes that the higher level of market saturation 

and increased product differentiation, has led to conventional network effects no 

longer being a crucial factor in choosing a mobile phone carrier.   

 

B.5.2 A Method for Capturing Network Externalities — Rohlfs (1979) 
 

To examine the socially-optimal price for the US Bell fixed-line telephony system, 

Rohlfs (1979) defined a term that was designed to simply capture the impact of 

network externalities on the demand for access to the local telephony service.  The 

work that follows summarises the formal analysis done by Rohlfs to establish the 

externality factor, and examines how the value of this externality factor is 

determined.42 

 

Rohlfs outlines on p 3 that the marginal private value for access is equal to, 

 

jj

jj
j yu

uû
mpv

∂∂

−
=        

  

where, mpvj = marginal private value of access to individual j; 

                                                 
39  J.G. Sidak and D.F. Spulber, Deregulatory Takings and the Regulatory Contract, Cambridge University Press, Cambridge, 

1997. 

40  A. Iimi, “Estimating Demand for Cellular Phone Services in Japan”, Telecommunications Policy 29, 2005, pp 3-23. 

41  Y. Okada and K. Hatta, “The Interdependency of Telecommunications Demand and Efficient Price Structure”, Journal of 

the Japanese and International Economies 13, 1999, pp 311-35. 

42  The formal analysis from Rohlfs (1979) is also summarised in S.J. Brown and D.S. Sibley, The Theory of Public Utility 

Pricing, Cambridge University Press, 1986, pp 197-9. 
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  jû = utility of individual j if he/she joins the network;  

   uj = utility of individual j if he/she does not join the network; and 

   yj = individual j’s income 

 

 while the marginal social value of access at p 5 is equal to 

 

∑ ∂∂
−

=
k kk

kk
j yu

uûmsv       

  

where, msvj = marginal social value of individual j’s joining the network 

  kû = individual k’s utility if j joins the network;  

   uk = individual k’s utility if j does not joins the network; and 

   yk = k’s income 

 

Rohlfs then defines the “externality factor” for access at p 6 as being equal to 

 

∑=

j
ssubscriber

marginal j

j

mpv
msv

n
1e       

 

where, n = the number of marginal subscribers to the network 

 

That is, the externality factor e is the average ratio of the marginal social value to the 

marginal private value for marginal subscribers.  Rohlfs outlines at p 6 in equation (1-

4), that the marginal condition for an unconstrained Pareto optimum now requires 

that, 

 

e × Paccess = Marginal Cost of Access   (B.31) 

 

or alternatively that the price for the access service or subscription is set equal to the 

eAccess) ofCost (Marginal .   
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The problem of estimating network externalities is well documented.  For example: 

 

 Rohlfs (1979) states at p 6 that, “measuring externalities to determine e is 

extraordinarily difficult”;  

 

 Brown and Sibley state at p 198 that:  “Clearly, it is difficult to measure e”; 

and 

 

 Crandall and Sidak (2004) state on p 299 that:  “The difficult question is how 

to value the network externality”.43 

  

 

In the absence of any empirical or econometric estimate for the network externality, 

Rohlfs (1979) outlines on p 6, that “the appropriate value of e must be determined by 

judgement”.  For example, by arguing on p 7 that it is “not unreasonable” to assume 

the value of the communication link is equal between the existing and new subscriber, 

he establishes that if there is no way to internalise the externality, the marginal social 

benefit will be twice the marginal private benefit to that user and e = 2.  Accounting 

though for the possibility that the network externality can be internalised, Rohlfs 

concludes on p 7 that,  

…the appropriate value of e may be considerably less than 2.  
However, it would exceed 1 to the extent that the externality cannot be 
completely internalised.  

 
This leads Rohlfs to analyse the economically efficient price for the Bell System’s 

fixed-line telephony operations employing the values for e of 1, 1.5 and 2, which he 

claims, “covers a reasonable range of plausible values of e”.   

 

Griffin (1982) used the externality factor developed by Rohlfs, along with the same 

values for the term “e”, in his later analysis on the efficient pricing for the US fixed-

                                                 
43  R.W. Crandall and J.G. Sidak, “Should Regulators Set Rates to Terminate Calls on Mobile Networks”, Yale Journal on 

Regulation 21, 2004, pp 264-319. 
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line telephony system.44  Like Rohlfs, Griffin found that the economically efficient 

prices were not very sensitive to the choice of e.   

 

In recognition of Griffin’s work representing the first time that the Rohlfs’ externality 

factor appeared in a published Journal article, the term “e” is now referred to as the 

“Rohlfs-Griffin” factor (or R-G factor), and based upon the initial values chosen by 

Rohlfs, it appears that it is now accepted that the R-G factor has a lower bound of 1 

and an upper bound of 2.  While the R-G factor was initially used to assess optimal 

pricing in the fixed-line telephony system, the R-G factor has also recently been 

employed to assess optimal pricing in the mobile network in the UK.  For example, in 

the UK the regulator used a value for e of between 1.3 and 1.7, in order to estimate 

the efficient price for the mobile termination access service.45  

  

B.5.3  Depicting the R-G Factor and the Impact of the Network Externality 
 

The constant value of the R-G externality factor e, where 1 < e ≤ 2, implies that 

wherever a subscriber derives a positive marginal private benefit from subscription, 

there must exist a positive marginal network externality.  Further, the constant value 

of the ratio implies that, as suggested would occur in the analysis in Section 5.1, the 

marginal network externality becomes less significant as the level of subscription 

rises.  The impact of the R-G factor and the resulting estimated deadweight-loss in 

competitive market framework are illustrated in the price-subscription space diagram 

in Figure B.12.  A similar diagram appears in Bomsel, Cave, Le Blanc and Neumann 

(BCLN, 2003) at p 22,46 which they note was also used in the UK by OFTEL and the 

Competition Commission. 

 
                                                 
44  J.M.Griffin, “The Welfare Implications of Externalities and Price Elasticities for Telecommunications Pricing”, The Review 

of Economics and Statistics 64, 1982, pp 59-66. 

45  The UK regulator used a value for the R-G factor of between 1.3 and 1.7, in order to estimate the efficient price for the 

mobile termination access service.  See Oftel, Review of the Charge Control on Calls to Mobiles, 26 September 2001, p 72, 

paragraph A4.45, available at:  http://www.ofcom.org.uk/static/archive/oftel/publications/mobile/ctm0901.pdf. 

46  O. Bomsel, M. Cave, G. Le Blanc and K-H Neumann, “How Mobile Termination Charges Shape the Dynamics of the 

Telecom Sector”, Final Report, CERNA, wik Consult, University of Warwick, 9 July 2003, available at 

http://www.cerna.ensmp.fr/Documents/OB-GLB-F2M-FinalReport.pdf. 
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The diagram illustrates that a competitive market for subscribers leads to a marginal 

cost-based price for access of P
1P  being charged to each of the P

1N  subscribers.   As 

the competitive provider fails to take into account the positive network externality, 

which is estimated using a given value of the R-G factor e, where 1 < e ≤ 2, it supplies 

below the estimated welfare-maximising level of subscription services *
1N .  The 

under-supply of subscription, equal to )N(N P
1

*
1 − , results in a DWL of area abc.  That 

is, because the pricing regime does not take into account the network externality 

estimated using the R-G factor, a socially sub-optimal network size is reached.    

FIGURE B.12 DEPICTING THE NETWORK EXTERNALITY USING THE R-G FACTOR 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

Where it is assumed there are no marginal DWLs associated with raising tax 

revenues,47 the Government can achieve the first-best level of subscription *
1N  that 

removes the DWL, by providing a Pigouvian subsidy on each unit of access of 

( )1-ePs *
1= .48  This subsidy decreases the private marginal cost of supply to MC1/e.   

                                                 
47  H.F. Campbell and K.A. Bond, “The Cost of Public Funds in Australia”, Economic Record 73, 1997, pp 22-34, estimate that 

in Australia the marginal cost to society for a $1 of government expenditure is approximately $1.24.  

48  Many authors use the spelling “Pigovian” in describing this type of subsidy.  While this spelling appears to be widely 

accepted by many academic journals and economists, particularly in the US, strictly speaking the correct spelling is 

Pigouvian.  The reason is that only this spelling gives the appropriate recognition to the original exponent of this type of tax 

or subsidy, the eminent economist A.C. Pigou. 
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In the above diagram, as N1(P1) represents the inverse demand curve for subscription, 

the welfare gain from taking into account the network externality — captured by area 

abc — can be estimated using the equation, 

( )1eMC)MC(NdP)(ePN 1111

eMC

MC
11

1

1

−−∫      

while the total subsidy payment S — captured in the diagram by area *
1

P
1 bdPP  — will 

be equal to, 

( ) ( )1-eTR1-eNPsNS *
1

*
1

*
1

*
1 ===      

 

BCLN (2003) note at pp 22-3, that while the total subsidy payment outlined above 

yields the optimal outcome, it should be regarded as a maximum total subsidy 

payment Smax.    The authors illustrate that if the subsidy could be individually tailored 

to each of the marginal subscribers from P
1N  to *

1N , then a minimum subsidy 

payment of Smin could be made, where ( )P
1

*
1min NN

2
eS −= ,49 and is captured by the 

area cbd in Figure B.12.  In assessing the feasibility of such a minimum subsidy 

payment, BCLN state at p 23 that while “perfect price discrimination is unrealistic in 

the real world, it is also not appropriate to assume that no opportunities for price 

differentiation exist.” 

 

B.5.4 R-B Pricing with the R-G Factor 
 
The previous section illustrates that where the R-G factor is used to estimate the 

network externality for the access or subscription service, the efficient outcome 

requires that the price for subscription is set equal to MC/e rather than the standard 

marginal cost of supply MC.  Consequently, where there are two services, common 

network costs, and an externality estimated by the R-G factor e on the access service, 

there will be a change in the standard R-B pricing outcomes.  Now the price for the 

access or subscription service needs to be marked up above MC/e, while the price for 

the other service will have the standard mark up above marginal cost.  Compared to 
                                                 
49  BCLN appear to get the equation for Smin slightly incorrect, as they do not multiply the expression by ½.  
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the instance where there are no externalities, there will now be a lower R-B price for 

subscription, which means that a higher R-B price is required for the other service in 

order to still recover the common network cost CC.  As it is possible for the marked-

up R-B price of the access service to still be below the marginal cost of production, 

the other service may even be required to contribute an amount that exceeds the 

common cost CC.  Such an outcome is illustrated in Figure B.13, where it is assumed 

that:  

   

 there is a common network cost of CC; 

 

 there are two services 1 and 2;   

 

 service 1 is an access service subject to a network externality e.  Here, instead 

of using the notation N, the term Q is employed to denote the number of 

subscribers or the quantity of demand for the access service; and 

 

 there are no cross-price effects (i.e. 0
P
Q

j

i =
∂
∂ , i,j = 1,2 & i ≠ j).   

 

FIGURE B.13 R-B PRICING WITH AN ACCESS EXTERNALITY 
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In the diagram the R-B price for service 1 leads to a price of R
1P  that is set above 

MC1/e, but lies below the marginal cost of providing service 1, MC1.  The result is a 

loss or negative producer surplus in market 1 (PS1) equal to the blue-shaded 

rectangular area R
1abcP , and a DWL equal to the green-shaded triangle area.  In 

market 2, the R-B for the service is such that it yields a producer surplus (PS2) equal 

to area defPR
2 , which is greater than the common cost of production CC.  This blue-

shaded area is in fact equal to the common cost plus an amount to cover the negative 

producer surplus obtained in the access market, i.e. R
1

R
2 abcPCCdefP += . 

 

Adopting the assumptions outlined above, it is possible to derive formally the 

adjustment that is required to the standard R-B pricing formula in equation (B.10), to 

take into account the access externality.  To assist with this derivation the diagram in 

Figure B.14 is also used.   

FIGURE B.14 THE MARGINAL WELFARE CHANGE WITH A NETWORK EXTERNALITY 
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— the combination of the blue and red slivered areas — which can mathematically be 

written as, 11
R

11 dQ)MC(ePdW −= .  While the change in profit is still captured by the 

expression in equation (B.8a), the change in welfare outcomes given by equation 

(B.8a) must now take into account the impact of the network externality that is 

estimated by the R-G factor.   

 

Thus, the change in profit and welfare will be given by,  

 

 0dPQdQ)MC(PdPQdQ)MC(Pdπ 2
R
222

R
21

R
111

R
1 =+−++−=    (B.32a) 

  0dQ)MC(PdQ)MC(ePdW 22
R
211

R
1 =−+−=          (B.32b) 

                           where, i
i

i
i dP

P
QdQ
∂
∂

= , i,j = 1,2      

 

Substituting dQi into equations (B.32a) and (B.32b) and rearranging, yields:  
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Equating (B.33a) and (B.33b) and cross-multiplying terms, 
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Substituting ( )
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which can be simplified to, 
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This can be rewritten as 
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As the own-price elasticity of demand for good i is 
i

i

i

i
i Q
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Qε
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−= , the above equality 

can be rearranged to give, 

 

( )
( ) R

2R
2

2
R
2

R
1

R
1

R
1

1R
1

ε
P

MCP
εe11

eε
P

e
MCP

−
−=⎥

⎦

⎤
⎢
⎣

⎡
−−

⎟
⎠
⎞

⎜
⎝
⎛ −

−     

 

Multiplying this through by –1 gives an expression for the R-B prices adjusted for the 

R-G factor that is assumed to capture the network externality on the access service 1, 
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  (B.34)50 

 

While Rohlfs first proposed that an adjustment was required to the efficient R-B price 

in the presence of an externality for the access service, it was Griffin in equation (16) 

at p 65, who first provided the type of expression outlined in equation (B.34).   

 

Finally, the expression actually provided by Griffin in equation (16) does differ 

slightly from that outlined in equation (B.34).  Griffin found that,  
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  (B.35) 

 

This difference between the two outcomes is that instead of defining the own-price 

elasticity as being 
i

i

i

i
i Q
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−= , Griffin instead used 
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=  in his analysis.51  

The outcome in the above equation is also presented in the Appendix of Brown and 

Sibley (1986) at p 199, although it appears that Brown and Sibley should actually be 

using the expression in equation (B.34) rather than that in equation (B.35), as they 

assume earlier at p 195 that the own-price elasticity is captured by the expression 
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50  Where there are cross-price effects a similar formula is derived, but the own-price elasticity of demand terms in equation 

(B.34) are replaced by superelasticity terms.  That is, 
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As the derivation is slightly more complex than is the case for the example with no cross-price effects, which is outlined 

above, it is not provided in this Appendix. 

51  While Griffin does not explicitly outline the formula used for the own-price elasticity, the paper consistently presents the 

numerical estimates as negative numbers.  
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B.5.5 The Call Externality 
 

The call externality arises because a telephone call provides benefits to both the 

originator and the recipient of the call, but only one party pays for the service — i.e. 

normally the calling party.  Mitchell and Vogelsang define the call externality at p 55 

as, “the benefit of a call to the party that does not have to pay for the call”, and Brown 

and Sibley note at p 197 that where the benefit to the recipient and the originator is 

the same, “the social benefit from the call is twice the marginal cost of the call”. 

 

Squire (1973) was one of the first to formally analyse the impact of the call 

externality on efficient pricing.52  He established that in the presence of a call 

externality, pricing according to marginal cost was no longer efficient.  Instead Squire 

states on p 524 that 

In general, the price of calls should be less than their marginal costs 
by a margin representing the external benefit received by the “callee.”  

 

A similar outcome is derived by Armstrong (2002) using a model that is designed to 

capture the impact of call externalities on the price of mobile termination.  He finds 

on p 344 that:53 

Therefore, if mobile subscribers derive a benefit from incoming calls, 
then the regulator should set the termination charge below cost in 
order to encourage calls from the fixed sector. 

 

 

Economists such as Littlechild (1975),54 Rohlfs (1979), Willig (1979) and Brown and 

Sibley (1986), however, suggest that in practice call externalities do not provide a 

strong case for a call price reduction.  They note that unlike the marginal network 

externality, which affects all subscribers to the network, the call externality only 

                                                 
52  L. Squire, “Some Aspects of Optimal Pricing for Telecommunications”, Bell Journal of Economics 4, 1973, pp 515-25. 

53  The outcome is mathematically shown by Armstrong in equation (46) on p 343.  

54  S.C. Littlechild, “Two-part Tariffs and Consumption Externalities”, Bell Journal of Economics 6, 1975, pp 661-70.  
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impacts upon two callers, so it can probably be efficiently internalised.55  This is 

highlighted by Willig, who states on p 133 that:   

The expression in equation (55) makes it clear that the marginal 
network externality effects that are relevant for pricing are potentially 
spread over all consumers with network access.  In contrast, the 
effects of potential uninternalized values of incoming flows discussed 
earlier were concentrated on one consumer.  For this reason, it was 
argued that such values were indeed likely to be privately internalized. 

 

Further, Rohlfs (1979) provides the example on p 5 that where two frequent callers 

arrange to call each other half the time, the call externality will be roughly 

internalised.  Rohlfs (2002) notes that in the UK Oftel reached a similar conclusion in 

assessing the call externality for mobile phone services.  It considered that even if 

corrective pricing could not be implemented, users would still be able to internalise a 

large portion of their call externalities.56  

 

The summary of the literature by Hahn (2003) seems to suggest that another possible 

explanation for call externalities being ignored is that, such externalities are very 

difficult to measure.57  He notes on p 950 that “there has been no market mechanism 

by which consumers can express their preference for incoming calls”.  Similarly, 

Mitchell and Vogelsang (1991) outlines on p 60 that a difficulty when assessing call 

externalities is that the demand for incoming calls is not readily observable, and 

cannot easily be related to other variables such as, outgoing calls, other purchases, or 

the number of subscribers.  Mitchell and Vogelsang on p 60, and Hahn on p 950, also 

question the ease with which call externalities can actually be internalised by parties.  

Citing the work of Acton and Vogelsang (1990),58 they note that the Coase theorem is 

hard to apply in such situations, because the negotiations between a caller and a 

receiver that would lead to the internalisation of the call externalities, themselves, 
                                                 
55  Brown and Sibley (1986) also outline on p 197 that there are likely to be telephone calls that people will be annoyed to 

receive, and these will impose a negative call externality on the call recipient.   

56  J.H. Rohlfs, Annex A:  Network Externalities and Their Internalization with Respect to the UK Mobile Market Network, 19 

April 2002, p 3, available at http://www.ofcom.org.uk/static/archive/oftel/publications/mobile/ctm_2002/annex_a.pdf. 

57  J-H Hahn, “Nonlinear Pricing of Telecommunications with Call and Network Externalities”, International Journal of 

Industrial Organization 21, pp 949-67. 

58   J.P. Acton and I. Vogelsang, “Telephone Demand Over the Atlantic — Evidence from Country-Pair Data”, Technical Report 

R-3715-NSF/MF, RNAD, Santa Monica, 1990. 
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require costly telephone calls to be made.  Both authors also summarise the results 

from Einhorn (1990),59 and Mitchell and Vogelsang states on p 61 that:  

The main result that can be derived in this context is that the 
importance of the call externality relative to the network externality 
increases with subscriber penetration.   

 
Therefore, in relation to the optimal R-B prices, Mitchell and Vogelsang conclude 

that, “the price/marginal-cost markup for calls, relative to that for access, should 

decrease as penetration rate increases.” 

                                                 
59 M. A. Einhorn, “Regulatory Biases in Network Pricing with Access and Usage Externalities”, mimeo, 1990. 
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B.6 R-B Pricing — Some Worked Examples 

The analysis in this Section provides a number of worked examples that shows how 

the R-B prices can be derived when it is assumed there is once again a common cost 

of production to recover and there is: 

 

 linear demand and no cross-price effects; and 

 

 constant elasticity demand and no cross-price effect. 

 

B.6.1 R-B Prices with Linear Demand and No Cross-Price Effects 
 

It is assumed in Section B.5.1 that the inverse linear demand curve for service i is, 

 

 P (Qi) = Ai – BiQi, where Ai > 0, Bi > 0, & i = 1, 2,…n  (B.36) 

 

As the demand curve is linear, the elasticity of demand at any given price Pi and 

quantity Qi will now be equal to εi = Pi(Qi)/BiQi.  As Bi is constant, the elasticity of 

demand will vary at different prices or different points along the demand curve.  

Therefore, where estimated elasticities and initial prices are being used to calculate 

the linear demand curve, it should be expect that the resulting elasticities at the R-B 

price will not be the same as those at the initial prices.   

 

B.6.1.1 Consumer and Producer Surplus, Deadweight-loss, and the Overall Welfare 
under Linear Demand 

 

The inverse demand curve given by equation (B.36) is illustrated in Figure B.15.  

Assuming there is some arbitrary price for each service i, 0
iP  — where 0

iP  > MCi —

quantity 0
iQ  will be consumed where, 

 ( ) i
0
ii

0
i 2BPAQ −=     (B.37a) 
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Further, there will be the following expressions for the consumer surplus, producer 

surplus and deadweight-loss in markets i = 1,…n. 

( )
i

20
ii0

i 2B
P-A)CS(P =      (B.37b) 

( )( )
i

0
iii

0
i0

i B
P-AMCP)PS(P −

=     (B.37c) 

( )
i

2
i

0
i0

i 2B
MCP)DWL(P −

=     (B.37d) 

 

The areas capturing the outcomes in equations (B.37b) to (B.37d) are illustrated in 

Figure B.15.  The red-shaded triangle area 0
iiCPA  captures the consumer surplus, the 

blue-shaded rectangle area CDFP0
i  captures the producer surplus, and the green-

shaded triangle area CED  captures the deadweight-loss. 

FIGURE B.15 CONSUMER AND PRODUCER SURPLUS AND THE DEADWEIGHT-LOSS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

As there is a common cost of the network providing these services of CC, the overall 

level of profit (i.e. π), welfare (i.e. S ) or inefficiency at price 0
iP , i = 1,…n, can 

formally be written, 

  Ai 

  Ai/Bi 
 0 

     ( )
i

0
ii

B
PA0

iQ −=  

 0
iP  

Qi 

  Pi 

  )CS(P0
i  
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MCi   D  F 

 )PS(P0
i    

 )DWL(P0
i  

  ( )
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ii
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CC)PS(Pπ
n

1i

0
i −= ∑

=

     (B.38a) 

( ) ∑∑
==

+=−+=
n

1i

0
i

n

1i

0
i

0
i π)CS(PCC)PS(P)CS(PS  (B.38b) 

       Total Inefficiency ∑
=

=
n

1i

0
i )DWL(P             (B.38c) 

 

It is important to note here that these expressions for the overall level of profit, 

welfare and inefficiency at the given price 0
iP  are not exclusive to the linear demand 

curve, and will also hold in the next section for the analysis using the constant 

elasticity demand curve.  

B.6.1.2 Solving for the R-B Price 
 

With linear inverse demand curve in equation (B.36) the expression in equation 

(B.10) generalised for n services, simplifies to 

R
jj

j
R
j

R
ii

i
R
i

PA
MCP

PA
MCP

−

−
=

−
−

, ∀ i ≠ j & i,j = 1,...n  (B.39) 

Solving for the price of service j as a function of the R-B price of service i yields 

 

( )
ii

jiijjj
R
iR

j MC-A
MCAMCAMC-AP

P
+−

= , ∀ i ≠ j & i,j = 1,..n   (B.40) 

 

As the prices are set so as to recover the common network costs CC and the allowed 

level of profit π  = 0, the above prices must also satisfy the constraint, 

 

( ) πCCQMCP R
j

n

1j
j

R
j +=−∑

=

, j = 1,...n  (B.41) 

 

While R-B prices are normally derived for outcomes where π  = 0, the above equation 

also allows for the derivation of prices when there is some level of positive profit (i.e. 

0π > ).  As outlined in Section B.3, when there are positive profits allowed, the 

resulting prices will have the same structure as R-B prices, but will be set a higher 
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level to efficiently distribute the common costs and the allowed rents across services i 

= 1,…n.  The prices in this instance — where 0π >  — maximise welfare for the 

given level of common cost and the allowed level of profit.60 

 

Substituting in an expression for R
jQ  using the equation for the linear demand curve 

(i.e. 
j

R
jjR

j B
PA

Q
−

= ), and substituting equation (B.40) into equation (B.41), yields a 

quadratic expression in R
iP , 
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 (B.42) 

 

Applying the quadratic formula the expression for the R-B price for each service i can 

be derived. 
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, i = 1,...n   (B.43)61 

 

The outcome in equation (B.43) can be substituted into equations (B.37a) to (B.37d), 

to derive expressions for the quantity demanded, the consumer surplus, the producer 

surplus and the deadweight-loss at the R-B price for the respective services 1 through 

to n.  Similarly using these outcomes the solutions for the overall profit, overall 

welfare and total inefficiency can be found using equations (B.38a) through to 

(B38.c).  

 

As the welfare-maximising competitive market price *
iP  in each of these markets is 

just i
*
i MCP = , and the unregulated monopoly price m

iP  under linear demand is 

                                                 
60  R.R. Braeutigam, “An Analysis of Fully Distributed Cost Pricing in Regulated Industries”, Bell Journal of Economics 11, 

1980, pp 182-96, outlines that the R-B prices can be derived for greater than zero profit on p 189 footnote 14, and on p 193 

footnote 17. 

61   There is also a maximum value from solving the quadratic, however that solution can be ignored as the price exceeds the 

monopoly price that the firm can charge in market i. 
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simply 
i

iim
i 2B

MCAP +
= , equations (B.37a) through to (B.37d) and equations (B.38a) 

through to (B.38c), can also be used to solve for all the competitive and unregulated 

monopoly market outcomes.  These can be compared with the R-B outcomes to 

highlight the welfare superiority of R-B pricing over the unregulated monopoly 

outcome, but welfare inferiority of R-B pricing over the first-best competitive market 

outcome.   

B.6.1.3 Comparing R-B Pricing with Fully-Distributed Cost (FDC) Pricing 
 

Under FDC pricing for each service i (i.e. FDC
iP ) allows the firm to achieve common 

cost recovery and its allowed level of profit π .  This is done by letting the firm obtain 

a producer surplus in each market that is equal to some proportion αI of its common 

cost and allowed profit.  That is, 

 

( ) ( )πCCαQMCP i
FDC
ii

FDC
i +=− ,  i = 1, ...n & 1α

n

0i
i =∑

=

 (B.44) 

 

A diagram capturing the outcome in equation (B.44) is illustrated in Figure B.16.  

FIGURE B.16 FULLY-DISTRIBUTED COST PRICING 
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In equation (B.44) the term αI can be arbitrarily chosen, or as Braeutigam (1980) 

outlines,62 set through three specific methods based upon: 

 

(1) Relative Output (i.e. 
∑
=

= n

1i
i

i
i

Q

Qα ); 

 

(2) Attributable Cost i.e. (
∑
=

= n

1i
i

i
i

C

Cα ); or  

 

 

(3) Gross Revenue i.e. (
∑
=

= n

1i
i

i
i

TR

TR
α ). 

 

 

In order to derive an expression for FDC
iP , ( )

i

FDC
ii

B
PAFDC

iQ −=  is substituted into equation 

(B.44), resulting in the following quadratic expression for FDC
iP , 

 

( ) ( ) 0FBαMCAPMCAP iiii
FDC
iii

2FDC
i =+++− , i = 1,...n  (B.45) 

 

Using the quadratic formula the solution for FDC
iP is, 

 

2
CCB4α)MC(A)MC(A

P ii
2

iiiiFDC
i

−−−+
= , i = 1,...n  (B.46)63 

 

Using methodology identical to that done under R-B pricing, expressions for output, 

consumer surplus, producer surplus, and the DWL in each market i can be derived, 
                                                 
62  R.R. Braeutigam, “An Analysis of Fully Distributed Cost Pricing in Regulated Industries”, Bell Journal of Economics 11, 

1980, pp 182-96. 

63  There are of course actually two prices from solving the quadratic.  However, the maximum price can be rejected, as this 

price exceeds the price that would be charged by an unregulated monopoly in market i. 
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along with the overall levels of profit, welfare and inefficiency.  The outcomes under 

FDC pricing can then be compared with those under R-B pricing, and used to 

highlight the welfare superiority of the cost allocation mechanism under R-B pricing. 

 

B.6.2 R-B Prices with Constant Elasticity Demand and No Cross-Price 

Effects 

 

As the title suggests, unlike the linear demand curve, the price elasticity of demand is 

the same or constant along all points of the constant elasticity demand curve, and 

where the term εi > 0 denotes the price elasticity of demand, the constant elasticity 

demand curve for service i will take the form, 

 

 iε
iii PAQ −= , where Ai > 0, i = 1, 2,…n    (B.47) 

 

Therefore, the resulting R-B prices will have the same elasticity as any other price 

that could be set in market i.   

 

B.6.2.1 Consumer and Producer Surplus, Deadweight-loss, and the Overall Welfare 
under Constant Elasticity Demand 

 

The demand curve given by equation (B.47) is illustrated in Figure B.17.  Assuming 

there is some arbitrary price for each service i, 0
iP  — where 0

iP  > MCi —quantity 0
iQ  

will be consumed where, 

 ( ) i-ε0
ii

0
i PAQ =     (B.48a) 

 

Further, there will be the following expressions for the consumer surplus, producer 

surplus and deadweight-loss in markets i = 1,…n. 
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The areas capturing the outcomes in equations (B.48b) to (B.48d) are illustrated in 

Figure B.17.  The red-shaded area captures the consumer surplus, the blue-shaded 

rectangle area CDFP0
i  captures the producer surplus, and the green-shaded triangle 

area CED  captures the deadweight-loss.  

FIGURE B.17 CONSUMER AND PRODUCER SURPLUS AND THE DEADWEIGHT-LOSS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
64  To find the solution for the consumer surplus with constant elasticity of demand at price i.e. )CS(P0
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Both Equation (B.48b) and the diagram indicate that unlike linear demand, with 

constant elasticity demand, the consumer surplus will be undefined.  While an 

approximation can be made, solutions for the indefinite integral will only exist when 

εi > 1.  Therefore, while equations (B.38a) through to (B.38c) can once again be used 

to solve for the overall level of profit (i.e. Π ), welfare (i.e. S ), or inefficiency at price 
0
iP , the solution for overall welfare will also be undefined when εi > 1.  Consequently, 

under constant elasticity of demand, a more meaningful welfare comparison involves 

comparing the total level of inefficiency under the different pricing regimes. 

 

B.6.2.2 Solving for the R-B Price 
 

It was established earlier that where λ represents a constant — sometimes referred to 

as the “Ramsey Number” —the R-B price for n services must satisfy, 
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−
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−
, ∀ i ≠ j & i,j = 1,...n  

 

Rearranging the above expression, the R-B price for service i is, 

λε
εMCP R
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= , i = 1,…n    (B.49) 

 

Dropping the superscript R on the elasticity term for the remainder of this Section, as 

in the analysis here it remains unchanged, the quantity demanded at the R-B price can 

be expressed as, 
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As the R-B price and quantity must also satisfy the constraint outlined in equation 

(B.41) — i.e. ( ) πCCQMCP R
i

n

1i
i

R
i +=−∑

=

, i = 1,...n — the outcomes in equations 

(B.49) and (B.50) can be substituted into equation (B.41) to give, 
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While there is no analytical solution for λ in equation (B.51), given values for the 

other parameters, and by recognising that λ lies between the value of 0 and 1, 

numerical techniques can be used to iterate towards a numerical solution.  For 

example, in Microsoft Excel the tool Goalseek employs such a process, and it can 

subsequently be used to solve for the Ramsey number.   

 

By substituting the value of λ into equation (B.49), the R-B price can be derived, and 

the solution used in equations (B.48a) through to (B.48d), and equations (B.38a) 

through to (B.38c), to derive the relevant outcomes under the R-B price with constant 

elasticity demand.  The result can then be compared with the competitive market 

outcome where price is i
*
i MCP =  and the unregulated monopoly outcome where 

price is 
1ε
εMCP

i

iim
i −
= .66   

 

In order to compare the R-B outcome with FDC pricing, the expression for the 

constant elasticity demand curve in equation (B.48a) is substituted into equation 

(B.44) to give, 
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  (B.52) 

 

As with the R-B price, numerical techniques can once more be employed to solve for 

the FDC price. 

 

                                                 
65  Brown and Sibley derive the same outcome on p 41. 

66  There will only be a solution for the unregulated monopoly outcome with a constant elasticity demand curve where the value 

of the elasticity of demand is greater than one.  


