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1 Introduction 

Visual Basic code has been developed, using the compiler in Excel, for certain calculations to 
dimension both the access and core networks in the Analysys cost model. 

For the access network, the Visual Basic is used to calculate the asset volumes required to deploy 
an access network to serve all locations within the Exchange Service Area (ESA). The algorithm 
considers a number of technologies to link locations back to the local exchange (LE) location in 
the ESA, namely fibre, copper, wireless or satellite (which would link customers to an earth-
station in the core network). This code is stored in the workbook Access – CODE.xls. 

For the core network, the Visual Basic purpose determines the efficient backhaul routes, using a 
spur and ring topology, from the local exchanges (Les) to the local access switches (or their next 
generation network (NGN) equivalents). 

This document outlines the structure underlying both sections of code, each of which are 
significant. In addition, the code itself has been annotated should users want to inspect it within the 
Visual Basic Editor. A treatment of the specific principles underlying the algorithms can be found 
within the main documentation for the Analysys cost model, entitled Fixed LRIC model 
documentation. 

The remainder of this document is laid out as follows: 

• Section 2 describes the Visual Basic used for the access network deployment. 

• Section 3 describes the Visual Basic used for the core network deployment. 
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2 Script for the access network algorithms 

2.1 Introduction 

The Visual Basic for the access network determines an efficient access network deployment for an 
ESA, given the location of the LE and a set of locations in the ESA with associated levels of 
demand. The algorithms includes two basic forms of deployment methodologies: 

• The urban deployment uses a combination of copper and fibre and assumes that locations are 
grouped into clusters served by a distribution point (DP) which are themselves served by a 
pillar. This is currently used in Bands 1 and 2 and the more densely populated geotypes of 
Bands 3 and 4. 

• The rural deployment uses a cost-based decision to determine whether it is more appropriate 
to serve each location in the ESA by wireline or wireless solutions. Locations served by 
wireline are served with either copper or fibre, whilst the remaining locations are served by 
either a wireless BTS network or satellite. 

This document outlines the structure of the underlying code, which is located in the workbook 
Access – CODE.xls, which is part of the geoanalysis and access network module of the Analysys 
cost model. 

The code follows two main paths depending on whether an urban or rural deployment is required. 
Both paths begin with a start-up phase, described in section 2.2, where constants and assumptions 
are read into the code. 

For an urban deployment, there are then eight phases, summarised below and described in more 
detail in section 2.3: 

• copper clustering phase 
• copper DP cluster spanning tree phase 
• copper DP cluster connection phase 
• copper pillar connection phase 
• fibre determination phase 
• backhaul determination phase 
• result storage phase 
• assumption storage phase. 

Rural deployments require more phases, since this type of deployment is considering more 
technologies. The phases are summarised below and described in more detail in section 2.4: 

• initial copper clustering phase 
• copper or wireless determination phase 
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• copper clustering phase 
• copper pillar cluster spanning tree phase 
• copper cluster connection phase 
• backhaul determination 
• fibre determination 
• copper result storage 
• wireless clustering 
• satellite determination 
• wireless backhaul determination 
• copper and fibre result storage 
• assumption storage. 

2.2 Start-up phase 

This stage is completed at the start of the calculation for any ESA. The following subroutines are 
used. For each sampled ESA to be calculated, the relevant Access DATA workbook is opened if 
needed, old assumptions are deleted and input arrays are populated. 

Two subroutines are run at the start of the process, SetupPermanentConstants and 
ReadInGeotypeData, which read in inputs relevant to all ESAs. 

For each ESA to be processed by the algorithms, three subroutines are used to read in input data 
specific to the ESA: SetupConstantsForThisESA, DeleteOldESAOutputs and Initialise. 

All five of these subroutines are described in sections 2.2.1–2.2.5 below. 

2.2.1 SetupPermanentConstants 

Location: Found in the CommonCode module 

Purpose: Reads in various assumptions and constants that are fixed regardless 
of geotype. This includes: 

• directory paths 
• cable sizes 
• array of network deployment assumptions 

2.2.2 ReadInGeotypeData 

Location: Found in the CommonCode module 

Purpose: Reads in the ESA indices as stored on the ‘Summary’ worksheet i.e. 
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the ESA geotype, index and index within the sample of the geotype. 

For each sampled ESA to be calculated, the relevant Access DATA workbook is opened if it is not 
already open. Old assumptions from previous calculations are then deleted and input arrays are 
populated. Throughout the process, the time taken at major stages in the process is stored. 

2.2.3 SetupConstantsForThisESA 

Location: Found in the CommonCode module 

Purpose: This resets all of the global variables and reads in the assumptions 
that vary by geotype on the ‘Inputs’ worksheet. These include the: 

• clustering capacity and distance constraints 
• p-function coefficients 
• assumptions for the copper versus wireless algorithm 
• proxy cost function coefficients 
• number of locations and the identity of the one that is the remote 

access unit (RAU) / local exchange(LE). 

2.2.4 DeleteOldESAOutputs 

Location: Found in the CommonCode module 

Purpose: Deletes the contents of all of the cells which were written to in the 
last calculation of this ESA 

2.2.5 Initialise 

Location: Found in the CommonCode module 

Purpose: Reads in the location coordinates and demand requirements for the 
relevant ESA from its worksheet in the Access DATA workbook: this 
includes the Geocoded National Address file (G–NAF) locations for 
rural ESAs. 

In particular, the array gobjInputPoints() is populated with the co-
ordinates and demand at each location. 
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The path of the code then diverges, depending on whether the ESA is to be processed with the 
urban or rural deployments. The code for urban deployments is described in section 2.3, whilst the 
code for rural deployments is described in section 2.4. 

2.3 Urban deployment path 

There are eight phases to the urban deployment: 

• copper clustering phase, which is described in section 2.3.1 
• copper DP cluster spanning tree phase, which is described in section 2.3.2 
• copper DP cluster connection phase, which is described in section 2.3.3 
• copper pillar connection phase, which is described in section 2.3.4 
• fibre determination phase, which is described in section 2.3.5 
• backhaul determination, which is described in section 2.3.6 
• result storage phase, which is described in section 2.3.7 
• assumption storage phase, which is described in section 2.3.8. 

2.3.1 Copper clustering phase 

This is run through the subroutine AllClusteringMethods, which is found in the MainMacros 
module. The urban deployment executes seven subroutines using AllClusteringMethods: 

• IdentifyRAU 
• DivisiveClustering 
• WriteClusterResults 
• ClusterToPillarClusterLevel 
• CalculateFibreUnitsOfDemand 
• IdentifyPillars 
• IdentifyDistPoints. 

These are explained in more detail in the following sub-sections. 

IdentifyRAU 

Location: Found in the Clustering module 

Purpose: This only calculates a RAU location for an ESA if no RAU location 
is stated in the ‘Inputs’ worksheet. Currently, each ESA uses the first 
location in the list as the location of the RAU, which has been 
extracted from ExchangeInfo. 

If a location is not stated for the RAU in the Access DATA 
workbooks, then the location closest to the demand-weighted centre 
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of the locations in the ESA is used. There are three sets of objects that 
can be used for this calculation by IdentifyRAU: locations, DPs and 
pillars. The urban deployment uses individual locations. 

DivisiveClustering 

This subroutine groups final drop points (FDPs) into clusters which are served by DPs. This 
clustering is based on a capacity and a distance constraint and is top-down in design. Specifically, 
a single parent cluster is created containing all of the locations and ‘child’ clusters are created from 
the parent, causing it to shrink in size. This ceases when the parent cluster satisfies both the 
capacity and distance constraints. 

The following subroutines create the parent cluster: 

► InitialiseClusterAllocations 

Location: Found in the Clustering module 

Purpose: Assigns each point to a single ‘parent’ cluster  

► InitialiseParentCapacity 

Location: Found in the Clustering module 

Purpose: Calculates the total demand within the parent cluster 

► CalWeightedCentre 

Location: Found in the Clustering module 

Purpose: By default, this calculates the demand-weighted centre of the parent 
cluster. If it is supplied with points that all have zero demand, then it 
will calculate the geometric centre of all the points. 

► CalSquareMaxDInP 

Location: Found in the Clustering module 

Purpose: This identify the point furthest from the centre of the parent cluster in 
order to generate a child cluster. Having identified the point, it sets: 

• the point as the first point in a new child cluster 
• the demand of the child cluster as the demand at that point. 

We note that we do allow points with demands greater than the limit 
of the capacity to be clustered as clusters of one point, although this 
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fails the capacity limit criterion. 

 

The main loop of the algorithm creates new child clusters until the parent cluster satisfies the 
demand and distance constraint. New child clusters are created by: 

• Selecting the point in the parent cluster that is furthest from its demand-weighted centre, using 
the subroutine ChooseFirstChildMember, which is found in the Clustering module. 

• Expanding the cluster by adding points from the parent. Each time a point is added: 
– all points in the parent cluster are shortlisted to those who are within twice the 

maximum permitted distance from the current child cluster demand-weighted 
centre and with a capacity that would not overfill the cluster capacity were it added 

– points that are found during this process to have too much demand for the cluster 
are not considered again for the cluster at all, but are kept within the parent cluster 
and are restored for consideration for the next child cluster 

– the point amongst these that is the closest to this child cluster demand-weighted 
centre is selected and provisionally re-allocated 

– the child cluster centre is re-calculated using CalUnweightedCentre, which is 
found in the Clustering module and calculates a geometric centres for the cluster 

– the re-allocation is finalised, unless the cluster no longer satisfies the distance 
criterion with the re-calculated cluster centre, in which case it is rejected. 

This loop uses the subroutine AllocatePointToCluster to move points between the parent and child 
clusters. 

► AllocatePointToCluster 

Location: Found in the Clustering module 

Purpose: Allocates a selected point to a given child cluster provided it doesn't 
violate distance constraints. If the allocation is accepted, then the new 
cluster centres of both the parent and the child are also re-calculated. 

 

When the parent cluster satisfies the demand and distance constraint, it is re-written as the final 
child cluster. A series of subroutines are then used to improve the quality of these clusters. These 
subroutines are: 

• SimpleReassignment 
• Swap 
• FullOptimisation 
• HighDemandSimpleReassignment 
• HighDemandSwap 
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• SingleDemandSwap. 

A dictionary of points is used to accelerate the refinement processes using a Scripting.Dictionary 
object. This object is populated before the refinement begins. 

These subroutines are reused frequently throughout the code for different clustering requirements 
and are each explained below. They can move any locations between cluster except for the RAU 
location when an ESA is using the fibre ring deployment. This very minor constraint allows the 
subroutines to be reused for clustering pillars into fibre rings, which requires that every cluster 
contains the RAU. 

These subroutines require particularly intensive use of distance calculations, particularly for 
distance comparisons (e.g. identifying whether a point P1 is closer to a point P2 or a point P3). We 
use a quicker distance measure in each of these cases with the subroutine 
CalcPfunctionDistanceComparisonOnly. 

► CalcPfunctionDistanceComparisonOnly 

Location: Found in the CommonCode module 

Purpose: For two points with co-ordinates (x1, y1) and (x2, x2) and a p-function 
with coefficients k and p, this subroutine outputs: 

⏐x1-x2⏐ p +⏐y1-y2⏐p 

This output does not include taking the pth root that would be 
required in deriving the actual p–function distance and therefore 
requires less time. Comparing two measures calculated with this form 
will give the same result as comparing two actual p–function 
distances, as functions of the form xp are increasing functions for 
positive x. 

In contrast, the subroutine CalcPfunctionDistance calculates the actual p–function distance 
between two points, executing the final stage of taking the pth root. 

► CalcPfunctionDistance 

Location: Found in the CommonCode module 

Purpose: For two points with co-ordinates (x1, y1) and (x2, x2) and a p-function 
with coefficients k and p, this subroutine outputs: 

k(⏐x1-x2⏐ p +⏐y1-y2⏐p)1/p 

This function can also be used for the normal straight-line distance 
measure, by using k=1 and p=2. 
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► SimpleReassignment 

Location: Found in the Clustering module 

Purpose: This subroutine will move a point from one cluster to another under 
certain conditions. 

To start with, the demand-weighted centres for each cluster is 
calculated and clusters with spare capacity are flagged. 

The main Do…Loop continues moving through reach point in turn 
until no more can be re-assigned. This can move through all of the 
points more than once. For each point: 

• The cluster with the closest demand-weighted centre is identified. 

• It is moved to this identified cluster if and only if: 
– the point is closer to this new cluster’s demand-

weighted centre than its current one 
– the new cluster has sufficient spare capacity 
– all points in the new cluster obey the distance 

constraint with respect to a cluster centre re-calculated 
using this new point. 

• Its old cluster is flagged to have spare capacity and the new 
cluster is checked to see whether it no longer has spare capacity. 

► Swap 

Location: Found in the Clustering module 

Purpose: This subroutine will swap a point in one cluster with a point in 
another under certain conditions. To start with, the demand-weighted 
centres for each cluster is calculated. 

The main Do…Loop cycles through all points in turn, possibly 
multiple times, until no more points can be swapped. For each point 
P: 

• The cluster with the closest demand-weighted centre is identified. 

• If the identified cluster is not P’s current cluster and, if moving P 
to the new cluster violates the maximum capacity constraints, 
then try to find a point Q in the new cluster which can be 
swapped with P so that all the following are satisfied: 

– the two new clusters both satisfy the cluster capacity 
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constraint 
– the sum of the two distances between the points and 

the cluster centres of their new clusters is lower than 
the sum of the distances between the points and the 
cluster centres of their original clusters 

– both clusters obey the distance constraint with 
respect to their new cluster demand-weighted centre. 

• If such a Q is found, then:  
– temporarily revise the two clusters 
– re-calculate their demand-weighted centres 
– re-calculate the sum of the two distances between the 

points and the re-calculated cluster centres of their 
new clusters 

– check if this new total distance is lower than the sum 
of the two distances between the points and the 
original cluster centres of their original clusters. 

• If this test is also successful, then make the swap permanent. 
Otherwise, restore P and Q to their original clusters. 

► FullOptimisation 

Location: Found in the Clustering module 

Purpose: This subroutine will move a point from one cluster to another if 
certain criteria are satisfied, though these criteria are different to those 
in SimpleReassignment. Specifically, it tries to minimise the total 
distance from the points in a cluster to its cluster centre. 

Firstly, the demand-weighted centres for each cluster is calculated. 

Then, for each cluster, the sum of the distances between the points in 
a cluster and its demand-weighted cluster centre are calculated. This 
uses the subroutine CalcTotalDist, which can be found in the 
Clustering module. Clusters with spare capacity are also flagged. 

The main Do…Loop cycles through all points in turn, possibly 
multiple times, until no more can be moved. For each point P: 

• The cluster containing P is identified. 
• The total distance (d1) between all points in this cluster and its 

cluster centre is stored. 
• P is temporarily removed from its cluster and both the demand-

weighted cluster centre and the total distance (d2) between the 
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cluster points and the new cluster centre are re-calculated. 
• P is then restored to its cluster. 
• For each cluster with sufficient spare capacity to accommodate P, 

the total distance (d3) between all points in this cluster and its 
current cluster centre is stored. 

• P is then added into this cluster and the demand-weighted cluster 
centre and the total distance (d4) between the DP locations and 
the new cluster centre are calculated. 

• The cluster which gives the largest reduction in total distance (i.e. 
which maximises ([d1-d2]-[d4-d3]) is identified. 

• If no clusters give a reduction, then proceed to the next point. 
• Otherwise, P is moved to the identified cluster provided that it 

would also satisfy the normal distance constraint using its new 
demand-weighted centre.  

• The original cluster is flagged as now having spare capacity. 
• The cluster that has received P is also checked to see if it still has 

spare capacity. 

► HighDemandSimpleReassignment 

Location: Found in the Clustering module 

Purpose: This is similar to SimpleReassignment, except that it only considers 
points with high demand (more than one unit of demand). Firstly, the 
demand-weighted centres for each cluster is calculated. Points with a 
high demand (more than 1 and at most the absolute maximum cluster 
capacity are then identified. 

The main Do…Loop cycles through all points in turn, possibly 
multiple times, until no more can be re-assigned. For each high-
demand point P in turn: 

• Identify the cluster whose demand-weighted centre is closest to P. 
• P is moved to this cluster if all the following are satisfied 

– P is closer to this new cluster’s demand-weighted 
centre than its current one 

– the new cluster has sufficient spare capacity (using 
the absolute maximum capacity limit, not the normal 
cluster capacity limit) 

– all points in the new cluster obey the distance 
constraint with respect to the new cluster centre. 

• If these are satisfied, then the cluster centres for both clusters 
involved are re-calculated. 

► HighDemandSwap 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 11 

9995-203   

Location: Found in the Clustering module 

Purpose: This is similar to NormalSwap, except that it only considers points 
with high demand (more than one unit of demand).The demand-
weighted centres for each cluster is calculated and high-demand 
points are identified. 

The main Do…Loop cycles through all points in turn, possibly 
multiple times, until no more can be swapped. For each high-demand 
point P in turn: 

• The cluster whose demand-weighted centre is closest to P is 
identified. 

• If the cluster is not P’s current cluster and, if moving the point to 
the new cluster violates the maximum capacity constraints, then 
try to find a point in the new cluster which can be swapped with P 
so that all the following are satisfied: 

– the two new clusters both satisfy the cluster demand 
constraint, but using the absolute maximum capacity 
as the limit 

– the sum of the two distances between the points and 
their DP cluster centres is improved compared with 
before 

– both clusters obey the distance constraint with 
respect to their new cluster demand-weighted centre. 

• If such a point is found, then revise the two clusters and re-
calculate their demand-weighted centres. 

• Otherwise, return the points to their original clusters. 

► SingleDemandSwap 

Location: Found in the Clustering module 

Purpose: This is identical to HighDemandSwap, except that it only considers 
points with one unit of demand. 

WriteClusterResults 

The first copper clustering phase for the urban deployment, which allocates locations to clusters 
served by a DP, uses the following sequence of refinement subroutines: 

• SimpleReassignment 
• Swap 
• FullOptimisation 
• HighDemandSimpleReassignment 
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• HighDemandSwap 
• SingleDemandSwap 
• SimpleReassignment 
• Swap. 

Having completed the clustering of the points, the cluster indices are printed on the output 
worksheet for the ESA. 

Location: Found in the Clustering module 

Purpose: Writes the cluster indices for each location in column H of the output 
worksheet for the ESA, beside its co-ordinates. 

ClusterToPillarClusterLevel 

Following the clustering of locations into DP clusters, a second clustering phase occurs by 
grouping DP clusters into pillar clusters. In order to reuse the clustering subroutines described 
above, local copies of the arrays containing the DP clustering data are taken, allowing the original 
arrays to be reused for the second level of clustering. This is accomplished by a subroutine called 
CopyClusteringArrays. 

► CopyClusteringArrays 

Location: Found in the CommonCode module 

Purpose: Stores the values contained in: 

• glNumPoints, which is the number of points to be clustered 
• gNumChildClusters, which is the number of child clusters created 
• glClusterAssignedTo(), which contains the cluster index for each 

point 
• glNumVerticesInCluster(), which contains the number of 

locations in each cluster 
• glClusterCapacity(), which contains the number of units of 

demand within each cluster 
• gobjInputPoints(), which contains data specific to each location, 

including the co-ordinates and number of units of demand. 

 

In particular, the DP cluster for each location is stored in glDPCluster(). 

The location of the DP that serves each DP cluster is defined as the location in the cluster closest 
to its demand-weighted centre. The identity of this point is stored in the array 
glClusterMainPoints(). The array gobjInputPoints() is then re-populated with the data for all the 
DP clusters. 
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The subroutine DivisiveClustering is then reused to derive pillar clusters for the DP clusters. These 
clusters are derived using only the points that are used as the DPs for the DP clusters. This 
implicitly ensures that locations in the same DP cluster are in the same pillar cluster. 

In this case, DPs are grouped into clusters served by pillars, using the subroutine 
DivisiveClustering. This clusters a set of locations based on a capacity and a distance constraint 
specific to pillars. These constraints are obviously larger than those used for clustering into DP 
clusters.  

InitialiseClusterAllocations, InitialiseParentCapacity, CalWeightedCentre, CalSquareMaxDInP 
and the main Do..Loop follow as previously described. However, a different order of refinement 
algorithms are used in this case, namely: 

• SimpleReassignment 
• Swap 
• FullOptimisation 
• SimpleReassignment 
• Swap. 

The resulting clustering data is then stored in separate arrays and the location-specific clustering 
data is restored to its original arrays using CopyClusteringArrays. In particular, the: 

• number of DPs in each pillar cluster is stored in glNumClustersInPillarCluster() 
• total demand served by each pillar is stored in glPillarClusterCapacity() 
• parent pillar of each DP is stored in glClusterToPillarCluster(). 

Having completed the first pass of the pillar clustering, a cleaning subroutine called 
ConsolidatePillars is used to check whether any pillars can be merged without breaking the pillar 
capacity and distance constraints. This is used in the urban deployment to merge points that are 
isolated and are effectively served by their own pillar. Using this subroutine, these points are 
reassigned to be served by their closest pillar that can accommodate the additional capacity. 

► ConsolidatePillars 

Location: Found in the Clustering module 

Purpose: The subroutine IdentifyPillars is first used to define a pillar for each 
pillar cluster. Local copies are then made of the following arrays: 

• glPillarClusterCapacity() 
• glNumClustersInPillarCluster() 
• glPillarClusterMainPoints() 
• glClusterToPillarCluster(). 

An array of the original pillar indices is also populated. This is to 
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track the merging of the pillar clusters. 

The pillars are then sorted into descending order of capacity, using 
the subroutine NearestPointsQuickSort. An array mapping the sorted 
pillar indices to the original indices, 
lngCopyPillarClusterIndexesINVERSE(), is then populated. 

The main loop then considers pillar clusters P in descending order of 
capacity until no more consolidation is possible. For each pillar 
cluster P, every other pillar cluster Q is considered in turn for 
potential merging: 

• If the total capacity of P and Q is less than the absolute maximum 
pillar cluster capacity, then temporarily merge the locations from 
P and Q into a single cluster (R) and re-calculate the pillar 
location for R using ReIdentifyPillar. 

• A merge is stated to be possible if: 
– R would satisfy the (absolute) pillar capacity 

constraint and distance constraint with itsnew pillar 
location 

– (only for urban deployments) if the capacity of P is 
smaller than some critical value, regardless of the 
result of the distance constraint test. 

• If the merge is possible, then Q is labelled as a possible merge 
with P in lng_tempClusterwhichcanmerge() and the distance 
between the cluster centres of P and Q is stored in 
dbl_tempClusterCentre_distance(). 

• Having checked through all possible Q, if the list of candidate 
pillar clusters for merging with P is empty, then flag that P cannot 
be merged with any other clusters. It is then not considered for 
further consolidation in the rest of the algorithm. 

• If the list is not empty, then merge P with the pillar cluster Q in 
the list whose cluster centre is closest to P’s pillar and use 
ReIdentifyPillar to calculate the new pillar location. 

The subroutines IdentifyPillars and ReIdentifyPillar are described in more detail below. 

IdentifyPillars 

Location: Found in the Clustering module 
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Purpose: For the urban deployment, pillar locations are identified as one of the 
DP locations in the cluster. The location defined as the pillar for each 
pillar cluster is stored in glPillarClusterMainPoints(). 

For the case of the pillar cluster containing the RAU, the pillar 
location is defined to be the RAU. 

Otherwise, the demand-unweighted centre of all the locations in the 
pillar locations using the subroutine 
CalUnWeightedPillarclusterCentre, found in the Clustering module. 

The DP location that is closest to this demand-unweighted centre is 
then defined as the pillar location for that pillar cluster.  

The subroutine ReIdentifyPillar is identical to IdentifyPillar in every 
respect, except that it recalculates the pillar location for a single pillar 
cluster, rather than every pillar cluster. 

CalculateFibreUnitsOfDemand 

Location: Found in the Clustering module 

Purpose: Calculates the demand served by fibre in each pillar cluster, by 
identifying those points that are served by fibre. This is stored in the 
array glDemandServedByFibreByPillar (). 

IdentifyDistPoints 

Location: Found in the Clustering module 

Purpose: This subroutine can only be used after the pillar locations have been 
defined. It redefines the DP location as the location in the DP cluster 
that is closest to the pillar location, rather than the demand-weighted 
centre. The only exceptions are when the DP is also a pillar location, 
in which case the previous DP location is retained. 

The new identities of the DP locations are used to update the array 
glClusterMainPoints(). 

2.3.2 Copper DP cluster spanning tree phase 

Having defined the clusters and locations of DPs and pillars, the subroutine 
ConstructTreeFollowingClusterMainPointIdentification derives the minimum spanning trees for 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 16 

9995-203   

each cluster. It begins with the subroutines GetMaxPointsInCluster and 
SetupArraysForSpanningTree, which requires information from across all the spanning trees. 

GetMaxPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Identifies the maximum number of points in a DP cluster across all 
DP clusters. 

SetupArraysForSpanningTree 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Dimensions the key arrays for the minimum spanning tree process: 

• glUnattachedPoint() – the list of locations in the cluster that are 
unattached at any point in the algorithm 

• glAttachedPoints() – the list of locations in the cluster that are 
attached at any point in the algorithm 

• glVertexRoute() – for any location, the location that it passes 
through in order to get back to the node location 

• gdDistanceMatrix() – stores the distance between any two points 
in the cluster 

• gobjEdges() – stores the vertices and lengths associated with each 
edge in the spanning tree. 

Following these two subroutines, each DP cluster is then treated in turn. The following subroutines 
are used in order to create and store the calculations: 

• SetupPointsInCluster – identifies the central point in the cluster 
• SetupGdDistanceMatrix – calculates the required distances  
• ConstructTree – constructs the minimum spanning tree for the cluster 
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node 
• GetTotalDistance – calculates the total trench within the tree 
• GetSheathLength – calculates the total copper sheath within the tree 
• GetCopperLength – calculates the total copper pair length within the tree 
• WriteNetworkResults – writes the list of edges in the spanning tree onto the output worksheet. 

SetupPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 
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Purpose: • Calculates the number of points in the cluster 
• Identifies the node for the cluster i.e. the DP location for the DP 

cluster and states this location as the central point cp. 

SetupGdDistanceMatrix 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For the urban deployment, calculates the straight-line distance 
between any two pairs of points and stores these distances in the array 
gdDistanceMatrix(). 

ConstructTree 

In order to derive the spanning tree for the cluster, the algorithm begins with the central point cp 
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached. 
Locations are then added to the tree incrementally. Each time a location is linked to the tree, it 
becomes attached and the lists of attached and unattached locations are updated using the function 
IdentifyAttachedAndUnattachedPoints. 

► IdentifyAttachedAndUnattachedPoints 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Moves through the entire set of points and enumerates them using 
two arrays, glUnattachedPoint() and glAttachedPoints(). 
glUnattachedPoint(j)=k means that point k is the jth point in the list 
that is unattached. Similarly, glAttachedPoint(j)=k means that point k 
is the jth point in the list that is attached. 

 

In order to determine which location to join to the tree, the algorithm calculates the average cost 
per unit of demand of linking an unattached point P to an attached point Q using a trench and a 
cable on the existing tree. This is determined by the function AverageCostPerLine. 

► AverageCostPerLine 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For the urban deployment, it determines the: 

• Extra capacity and the copper pair requirements (c) needed to 
serve the unattached point. 
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• Length of extra trench distance (d) to link the attached and 
unattached point. 

The cost of the new link is then calculated using the proxy cost 
expression: 

k1*d + k2*c + k3*d*c + k4*√c 

and calculates the new cost per unit of demand for the entire tree. 

For each unattached point P, the edge to connect each attached point Q to the tree is considered. 
The edge that gives the lowest new average cost per unit of demand for the whole tree is stored in 
the array objEdgeList() using AddToEdgeList. 

► AddToEdgeList 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Having identified the best edge by which to join a particular point to 
the existing tree, this subroutine stores the vertices of this edge and its 
average cost per unit of demand. 

Having stored the best edge to link each unattached point P to the tree in objEdgeList(), the edge 
that gives the overall lowest new average cost per line is then permanently added to the tree using 
AddCheapestEdgeInListToObjEdges. 

► AddCheapestEdgeInListToObjEdges 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Adds the best edge in objEdgeList(), in terms of average cost per 
line, to the list of edges for the minimum spanning tree. 

• Updates the array glVertexRoute() for this new edge in the tree, 
defined by: 

 glVertexRoute(unattached location on new edge) = attached 
locations on new edge 

• Updates the total copper length required to link the location all 
the way back to the node. 

The number of unattached points is reduced by 1 and the lists of attached and unattached points 
updated using IdentifyAttachedAndUnattachedPoints. The loop in ConstructTree continues until 
all locations in the cluster are part of the spanning tree. 
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StoreRoutes 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For each point P in the cluster, this stores the point Q that it passes 
back through in order to reach the DP, with the array defined as: 

glRouteToCentre(P) = Q 

GetTotalDistance 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total trench in the spanning tree, by cycling through all 
points P in the cluster and calculating the distance between P and its 
predecessor on its way back to the DP. 

GetSheathLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total cable sheath in the spanning tree, by cycling 
through all points in the cluster and calculating the distance between 
P and its predecessor back to the DP. It then multiplies this by the 
sheath requirements for the link given the demand at P. 

GetCopperLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total copper cable length in the spanning tree, by 
cycling through all points P in the cluster and calculating the distance 
between P and its predecessor back to the DP. It then multiplies this 
by the copper pair requirements given the demand at P. 

WriteNetworkResults 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Writes the points and their co-ordinates in the output worksheet 
for the ESA (in rows BF–BM) that define every edge in the 
spanning trees for the DP clusters. 
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• Write the number of ducts needed, by type, for each edge. 

• Determines how many extra pits are required along these edges. 

• Writes the DP locations, their co-ordinates and their parent pillar 
in the output worksheet for the ESA (in rows BX–CD). 

2.3.3 Copper DP cluster connection phase 

This phase is run through the ConnectClusters subroutine, which is found in the ClusterToCluster 
module. This joins up all the DP locations within a pillar cluster back to the pillar using the 
subroutine RunAtClusterLevel, which also lies in ClusterToCluster module. This subroutine is 
only used if there is more than one DP location in the pillar cluster. 

Firstly, the largest number of DP locations to be found in any pillar is calculated. Then, 
RunAtClusterLevel executes several subroutines: 

• SetUpClusterPairIndex 
• IndexClusterWithinPillarCluster  
• SortPairsOfClusters 
• RoutePointsForCluster 
• ApplyDijkstra (contained within RoutePointsForCluster). 

SetUpClusterPairIndex 

Location: Found in the ClusterToCluster module 

Purpose: Indexes pairs of DPs in a pillar area so that each unordered pair 
occurs exactly once. The index uses triangular numbers: e.g. for four 
DPs, (DP1,DP2) → 1, (DP1,DP3) → 2, (DP1,DP4) → 3, (DP2,DP3) 
→ 4, (DP2,DP4) → 5, (DP3,DP4) → 6 

IndexClusterWithinPillarCluster 

Location: Found in the ClusterToCluster module 

Purpose: This creates a new indexing ClusterIndex() of DP clusters in a pillar 
cluster so that they are numbered from 1 to n, where n is the number. 

For example, if we are looking at the second pillar cluster and the 
first DP cluster within this pillar cluster is DP cluster 100, then 
ClusterIndex(1)=100. An inverse mapping InverseClusterIndex() is 
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also stored, so that we can move between the two indices. 

Following IndexClusterWithinPillarCluster, the DP that is the pillar location is identified. 

SortPairsOfClusters 

Location: Found in the ClusterToCluster module 

Purpose: • For each pair of DP clusters in this pillar cluster: 
– calculate how many unique pairs of points there are 

which have one point from each DP cluster 
– explicitly identify these pairs of points and, for each 

pair, calculate the distance between the two points 
– sort the pairs of points in order of this distance, with 

the closest pair of points listed first. 

RoutePointsForCluster 

This subroutine is found in the ClusterToCluster module. Its purpose is to calculate, for each pair 
of DP locations, the connection, possibly via other DP locations, that has the lowest cost 
(according to our proxy cost function k1*d + k2*c + k3*d*c + k4*√c). 

A linkage between two DPs can be split into two components: a component that uses only 
additional trench and a component that uses only existing trench. 

The proxy cost function for costing up a part of a link which requires new trench assumes 
additional trench cost. This is calculated using M1 * new trench length LN, where the cost 
multiplier M1 = k1 + (k3 * cabling capacity CD) + (k4 * √CD). 

The proxy cost function for costing up a part of a link which uses only existing trench assumes no 
additional trench cost. The cost of this is calculated by using M2 * existing trench length LE, where 
the cost multiplier M2 = (k3 * cabling capacity CD) + (k4 * √CD). 

These separate cost multipliers M1 and M2 are calculated for each pair of DPs and stored in the 
arrays dCostMultiplier1() and dCostMultiplier2() respectively. AS shown above, these multipliers 
depend on the value of CD, which itself depends on whether this part of the network is assumed to 
be tapered or non-tapered, as shown below in Table 2.1. 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 22 

9995-203   

Assumption of 
distribution network 

CD Joints required   

Fully tapered Smallest cable size in the 
distribution network that 
accommodates the larger of 
the demands served by the 
two DPs 

Smallest cable size in 
the distribution network 
that accommodates the 
larger of the demands 
served by the two DPs 

  

Non-tapered Number of pairs in the main 
cable size used in the 
distribution network 

Equal to the larger of 
the demands served by 
the two DPs 

  

Table 2.1: Calculation 

of jointing and CN 

[Source: Analysys ] 

 
The remainder of RoutePointsForCluster then proceeds as follows, for each pair of DP clusters: 

• Identify the pair of points, 1 from each DP cluster, which are the closest (at a distance d apart, 
calculated using the p–function). 

• Calculate the sum of the distances DT of each point in the pair back to its respective DPs. 

• The proxy cost of linking the two DP clusters together through these points is then assumed to 
be (M1 * d) + (M2 * DT). 

• For each pair of DP clusters, identify the pair of points which give the lowest proxy cost: this 
gives a fully meshed set of linkages between all DPs. 

• We then apply a version of the Dijkstra algorithm using the subroutine ApplyDijkstra. This 
identifies a subset of these linkages that can link all DPs back to the RAU at the lowest cost. 

ApplyDijkstra 

Location: Found in the ClusterToCluster module 

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route 
between any DP cluster and the pillar node, using the calculated 
mesh of linkages. 

• Set lIncoming() for each DP, by default, to be its own demand. 

• Assume, provisionally, that all DPs are connected directly to the 
pillar. 

• Start the algorithm with the pillar. 

• For every other DP, recall the requirements for linking it to the 
pillar: 

– extra trench 
– cost of linking the two DPs 
– cabling cost of linking the two DPs (i.e. excluding 
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trench cost) 
– joints required, using GetJointingCosts 
– total sheath length between them. 

• Execute the following loop whilst there are still unconnected 
DPs, starting at the pillar: 

– for a given connected DP i, look through the 
unconnected DPs and determine which DP (j)is the 
most cost effective to link directly to DP i 

– update the array lIncoming(i), which is defined as the 
total demand passing through the DP on the way back 
to the pillar, to include the demand at j 

– for each unconnected DP, test to see if its currently 
identified path to the pillar has a lower proxy cost 
than if it were to go through i. If the proxy cost is 
lower, then set its provisional route back to the pillar 
to be via i and update lIncoming() accordingly 

– for each unconnected DP k, test this by: 
o calculating all the extra jointing costs of 

going through DP i (possibly via other DPs) 
back to the pillar, rather than direct 

o if ([total cabling cost of linking k to pillar via 
i] +[extra jointing costs of linking k to pillar 
via i] + [the cost of linking k to DP i]) < cost 
of linking k to the pillar directly, then set the 
provisional link for k to be via DP i 

– set i to be the DP that was just connected (j) and 
return to the start of the loop. 

• When all DPs have been connected back to the RAU, aggregate: 
– extra trench to join all DP clusters in the pillar cluster 

to the pillar location 
– demand-related jointing required 
– number of branching kits required 
– distance related jointing required (non-tapered case 

only) 
– incremental copper sheath required 
– incremental copper sheath by cable size 
– incremental copper km required 
– the routes that DPs take back to their parent pillar, in 

glPreviousClusterBackToPillar(). 

This subroutines refers to several other functions within it, which are explained below. These are 
GetJointingCosts and CostOfEdgesCountedTwice. 
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► GetJointingCosts 

Location: Found in the ClusterToCluster module 

Purpose: This identifies the jointing required for a particular link from a DP i 
back to the pillar. The calculation depends on whether the network is 
assumed to be fully tapered or non-tapered: 

In the tapered case, we revise the cabling required on each link 
required on the path from i back to the pillar based on the cable sizes 
available to us. The jointing is then aggregated at each DP on the path 
that i takes back to the pillar, each time adding on the demand at the 
DP and the downstream cable capacity. 

In the non-tapered case, we revise the cabling required on each link 
required on the path from i back to the pillar based on the main and 
minor cable sizes assumed. The jointing is then aggregated at each 
DP on the path that i takes back to the pillar, each time adding on the 
demand at the DP. A full joint of the cable is only included at regular 
distance intervals, rather than at every DP. 

 

The final step in ApplyDijkstra is to calculate the sheath requirements for each link within the 
pillar cluster, using the subroutine CalculateDuctByType. 

► CalculateDuctByType 

Location: Found in the CalculateDuct module 

Purpose: Identifies the number of sheaths by cabling type within each DP–DP 
link in the pillar clusters, as preparation for the derivation of the 
number of ducts within each link in the subroutine WriteDuctOutputs. 

If the cabling within the DP–pillar network is assumed to be tapered, 
then 1 sheath is assumed to be required within each link. 

If the cabling within the DP–pillar network is assumed to be non-
tapered, then the sheath requirements are derived with 
GetNonTaperedSheath. 

For each DP–DP link and each edge within these links, the number of 
sheaths required is calculated and stored as intra-pillar (copper) duct. 
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2.3.4 Copper pillar connection phase 

The latter part of ConnectClusters is also used to drive the connection of pillars to RAU. Firstly, 
the largest number of DP locations to be found in any pillar is calculated and the arrays 
lClusterIndex(), lInverseClusterIndex(), lClusterPairIndex() are resized. 

RunAtPillarClusterLevel, which is found in the PillarClusterToPillarcluster module, then runs the 
following subroutines: 

• SetUpClusterPairIndex 
• SortPairsOfPillarClusters 
• RoutePointsForPillarCluster 
• ApplyDijkstraForPillarClusters (within RoutePointsForPillarCluster). 

SetUpClusterPairIndex 

Location: Found in the PillarClusterToPillarcluster module 

Purpose: This sets up an index for pairs of pillar clusters, so that each 
unordered pair occurs exactly once. The index uses triangular 
numbers: e.g. for four pillars, (P1,P2) → 1, (P1,P3) → 2, (P1,P4) → 
3, (P2,P3) → 4, (P2,P4) → 5, (P3,P4) → 6 

SortPairsOfPillarClusters 

Location: Found in the PillarClusterToPillarcluster module 

Purpose: • For each pair of pillar clusters in the ESA: 
– calculate how many unique pairs of DPs there are 

which have one DP from each pillar cluster 
– explicitly identify these pairs of DPs and, for each 

pair, calculate the distance between the two DPs using 
the p-function 

– sort the pairs of DPs in order of this distance, with 
the closest pair of DPs listed first. 

RoutePointsForPillarCluster 

Location: Found in the PillarClusterToPillarcluster module 

Purpose: • Finds the least proxy cost route for connections between pillar 
clusters and then connections to the RAU. 
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• This assumes that: 
– if the route for a pillar location back to the RAU goes 

through other pillar clusters, then it passes through 
their pillar locations 

– it also assumed that each pillar–RAU link is a 
discrete cable. 

• The proxy cost function when costing up linkages with new 
trench assume additional trench cost [uses a cost multiplier of M1 
= k1 * + (k3 * pillar–RAU cabling capacity CD) + (k4 * √CD), to 
multiply by the new trench length LN ]. 

• The proxy cost function when costing up linkages through 
existing trenches assume no additional trench cost [uses a cost 
multiplier of M2 = (k3 * pillar–RAU cabling capacity CD) + (k4 * 
√CD), to multiply by the existing trench length LE ]. 

• When costing the links between any two pillar locations, for each 
unique pair of pillar clusters: 

– identify the pair of DPs (with one from each pillar 
cluster) which are the closest (a distance d apart, 
calculated with the p–function) 

– calculate the sum of their distances back to their 
respective pillars, DT 

– the proxy cost of linking the two pillars clusters 
together through these DPs is then assumed to be 
(M1 * d) + (M2 * DT) 

• For comparing the costs of linking two pillars, since the cable 
capacity between a pillar and the RAU is constant, jointing proxy 
costs are not included in our sum, so k2 is not included above. 

• For each pair of pillar clusters, identify the pair of DPs which 
give the lowest linking proxy cost. 

• Add on the jointing cost for each of these best linkages. 

• This gives us a fully meshed set of linkages between all pillars. 

• These linkages are stored in the array C2CEdgePillar(). 
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ApplyDijkstraForPillarClusters (within RoutePointsForPillarCluster). 

Location: Found in the PillarClusterToPillarcluster module 

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route 
between any pillar and the RAU, using these linkages. 

• For every other pillar, recall the requirements for linking it to the 
RAU: 

– extra trench 
– cost of linking the two pillars 
– cabling cost of linking the two pillars (i.e. excluding 

trench cost) 
– (effectively) total sheath length between them. 

• Assume, provisionally, that all pillars are connected directly to 
the RAU. 

• Start with the RAU. 

• Then, execute the following loop whilst there are still 
unconnected pillars: 

– for a given (connected) pillar i, look through the 
remaining unconnected pillars and decide which pillar (j) 
is the most cost effective to link directly to pillar i 

– then, for each unconnected pillar k, test to see if there is a 
cheaper proxy cost in linking it back to the RAU by 
going through i, or via the current provisional path, by: 
o calculating all the extra jointing costs of going 

through pillar i (possibly via other pillars) back to the 
RAU, rather than its existing path 

o if ([total cabling cost of linking k to RAU via i] 
+[extra jointing costs of linking k to RAU via i] + [the 
cost of linking k to pillar i]) < cost of linking k to the 
RAU directly, then set the link for k to be via pillar i 

– set i to be the pillar that was just connected (j) and return 
to the start of the loop. 

• When all pillars have been connected, calculate: 
– total extra trench required to join all pillars to the RAU 
– incremental copper sheath required to link the pillar 

location back to the RAU, for each pillar cluster 
– for each pillar, the previous pillar on its way back to the 

RAU, stored in glPreviousPillarCentre(). 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 28 

9995-203   

2.3.5 Fibre determination phase 

Having completed the trench network for the copper network, the algorithm then seeks to overlay 
a fibre network to serve the locations of high demand. There are two paths to follow for this 
section depending on whether the fibre implementation uses a series of fibre rings or point-to-point 
connections. These are handled by the subroutines IncludePillarsInFibreRingForHighDemand and 
LinkFibrePointsDirectlyToPillar respectively, which are both found in the BuildFibreRing 
module. 

IncludePillarsInFibreRingForHighDemand 

For the urban deployment, this subroutine derives a series of fibre rings passing through some or 
all of the pillar locations. The extra trench and cables required to create this rings is derived. The 
incremental fibre sheath and cable required to link the fibre-fed locations back to their parent pillar 
and onto the fibre ring are then also calculated. 

• For each pillar cluster, the number of DPs are identified. 

• The pillar clusters that are to be included within the fibre rings are then identified: this may be 
all of them, or it may only be those that serve fibre-fed locations. Those pillars to be included 
are flagged using the array gBolPillarClusterInAFibreRing(). 

• The subroutine ClusterNodesForFibreRing groups the identified pillars into a set of clusters, 
each one to be served by a ring. 

► ClusterNodesForFibreRing 

Location: Found in the BuildFibreRing module 

Purpose: • The data contained within the arrays used in the clustering 
algorithms is first backed up into local arrays. In particular, the 
data contained within gobjInputPoints() is stored in 
objgIndividualPoints_FibreRing(). 

• The clustering arrays are then re-populated with the data for the 
pillars to be put into a fibre ring. 

• Using the maximum number of nodes that can be in a fibre ring 
(glMaxNodesInFibreRing), the number of rings required is then 
calculated. This in turn sets the capacity constraint for the fibre 
ring clustering, by attempting to achieve a balance in the number 
of pillars in each ring. 

• The subroutine DivisiveClustering, found in the Clustering 
module, is then used to cluster the pillars into fibre rings. An 
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effectively infinite distance constraint is used and the design of 
the clustering algorithms means that the RAU always lies in each 
of the clusters. 

• The allocation of each pillar to a fibre ring is then stored in 
glPillarClusterToFibreRing() and the clustering arrays are 
restored to their original values. 

• Each fibre ring is then mapped into the array 
glFibreRingToPillarMapping(), defined by: 

glFibreRingToPillarMapping(j,k) = kth pillar in the ith fibre ring 

• The first pillar in each ring is always defined to be the RAU. 

 

• For each ring, the total number of fibres that the ring serves across all the pillar (barring the 
RAU) is calculated. This assumes a fixed number of fibre (glFibrePairsDPToPillar) for each 
fibre-served location. This number of fibres is stored in glTotalFibreDemandOnRing(). 

• The subroutine RunAtFibreRingLevel then identifies the lowest cost linkages between each 
pair of pillar location, assuming the existing trench network for the copper served locations. 

► RunAtFibreRingLevel 

Location: Found in the PillarClusterToPillarCluster module 

Purpose: • This runs several subroutines similar to those run in the copper 
pillar connection phase. These subroutines are: 

• SetUpClusterPairIndex, as explained in section 2.4.5 
• SortPairsOfPillarClusters, as explained in section 2.3.4 
• RoutePointsForFibreRing, as explained below. 

► RoutePointsForFibreRing 

Location: Found in the PillarClusterToPillarCluster module 

Purpose: • Finds the least proxy cost route for connections between any two 
pillar clusters. 

• The proxy cost function when costing up linkages with new 
trench assume additional trench cost [uses a cost multiplier of M1 
= k1 * + (k3 * DP–pillar cabling capacity CD) + (k4 * √CD), to 
multiply by the new trench length LN ]. 

• The proxy cost function when costing up linkages through 
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existing trenches assume no additional trench cost [uses a cost 
multiplier of M2 = (k3 * DP–pillar fibre cabling CD) + (k4 * √CD), 
to multiply by the existing trench length LE ]. 

• A single estimate of the total fibre cable used in any pillar–pillar 
link is made by taking the maximum of the cable sizes required 
on the fibre rings, estimated using ProxyCableToUseInFibreRing. 
This is only used within the proxy cost functions. 

• When costing the links between any two pillar locations, for each 
unique pair of pillar clusters: 

– identify the pair of DPs (with 1 from each pillar 
cluster) which are the closest (a distance d apart, 
calculated with the p–function) 

– calculate the sum of their distances back to their 
respective pillars, DT. 

• The proxy cost of linking the two pillars clusters together through 
these DPs is then assumed to be (M1 * d) + (M2 * DT). 

• For each pair of pillar clusters, identify the pair of DPs which 
give the lowest linking proxy cost. 

• This gives us a fully meshed set of linkages between all pillars. 

• These linkages are stored in the array C2CFibreRing(). 

► ProxyCableToUseInFibreRing 

Location: Found in the BuildFibreRing module 

Purpose: This identifies a single fibre cable size to use for the proxy cost 
function used to determine the lowest cost paths between any pair of 
pillar locations. 

• For each fibre ring, the smallest fibre cable size that can 
accommodate the total capacity on that ring is identified. 

• If no single cable size has enough capacity, then the combination 
of the two largest cable sizes that gives enough capacity is 
identified. 

• The largest cable requirement across all fibre rings is then used as 
the single estimate of the required cable size. 
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For each fibre ring, the following subroutines are then run to determine the best ring formation for 
the pillars in this ring: 

• RunTheTSPAlgorithm 
• UpdateFibreCableAndTrenchArrays 
• TotalTrenchForThisFibreRing 
• TotalCableForThisFibreRing. 

► RunTheTSPAlgorithm 

Location: Found in the RunTSP module 

Purpose: This version of the algorithm is almost identical to that of the 
subroutine RunTSP in the core network algorithms, as described in 
section 3.3. 

It uses a Travelling Salesman Problem (TSP) algorithm to derive the 
most efficient ring structure to join a set of points. 

Versions of the relevant Visual Basic code are contained in: 

• the modules InitialiseTSP, RunTSP and ShortestRing 
• the class modules clsClusterPair, clsRing, clsTSPData and 

clsTSPInputData. 

► UpdateFibreCableAndTrenchArrays 

Location: Found in the BuildFibreRing module 

Purpose: For a given fibre ring, this stores particular data about the fibre ring, 
including: 

• the next pillar in the ring for each given pillar 
• whether, for each link in the ring, the trench already exists from 

the copper deployment or not 
• the pillar that is first on the ring after the RAU. 

► TotalTrenchForThisFibreRing 

Location: Found in the BuildFibreRing module 

Purpose: Calculates the extra trench required to connect the pillars in a given 
fibre ring. 

► TotalCableForThisFibreRing 

Location: Found in the BuildFibreRing module 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 32 

9995-203   

Purpose: Calculates the total fibre sheath and cable lengths required to connect 
the pillars in a given fibre ring 

• For the given fibre ring, the smallest fibre cable size that can 
accommodate the total capacity on that ring is identified. 

• If no single cable size has enough capacity, then the combination 
of the two largest cable sizes that gives enough capacity is 
identified. 

 

Having calculated the trench and cable requirements for the fibre rings, 
IncludePillarsInFibreRingForHighDemand then calculates: 

• The fibre sheath needed to join each fibre-fed location back to its parent pillar, by using the 
same path followed by the copper network (each fibre-fed location has a nominal unit of 
demand served by the copper network). 

• The fibre cable length needed to join each fibre-fed location back to its parent pillar on a 
pillar-by-pillar basis, by multiplying the total FDP–DP and DP–pillar fibre sheath lengths by 
their respective assumed fibre cable sizes. 

• The fibre-specific duct required, using CalculateFibreDuctByType for links back to the pillar 
and CalculateDuctsForFibreBackFromPillar for links from the pillar back to the RAU. 

LinkFibrePointsDirectlyToPillar 

Location: Found in the BuildFibreRing module 

Purpose: This calculates the fibre sheath and cable length requirements for 
joining each fibre-fed location back to its parent RAU via its parent 
DP and pillar. This uses the path determined by the nominal unit of 
demand assigned to each fibre-served location in the copper network. 

This function does not need incremental trench, since the existing 
trench network is assumed to be used as the path back to the RAU. 

For the urban deployment: 

• The number of DPs in each pillar cluster are calculated. 

• Fibre-fed locations are flagged in the array bolPointFedByFibre(). 

• DPs served only by fibre are flagged by bolDPServedByFibre(). 
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• The fibre sheath needed to join each fibre-fed location back to its 
parent RAU is calculated, by using the same path followed by the 
copper network. 

• The fibre length needed to join each fibre-fed location back to its 
parent RAU is calculated for each pillar cluster, by multiplying 
the total FDP–DP, DP–pillar fibre sheath lengths by their 
respective assumed fibre cable sizes. 

• The pillar-RAU fibre sheath length is assumed to be the same as 
that for the analogous connection in the copper network 

• The pillar-RAU fibre length is assumed to be the fibre sheath 
length multiplied by the assumed fibre cable size in the DP–pillar 
part of the network. 

• A discrete cable is assumed for each fibre-fed location all the way 
back to the RAU (point-to-point architecture). 

• The amount of fibre-specific duct required is calculated using 
CalculateFibreDuctByType for links back to the pillar and 
CalculateDuctsForFibreBackFromPillar for the links from the 
pillar back to the RAU. 

► CalculateFibreDuctByType 

Location: Found in the CalculateDuct module 

Purpose: This calculates the duct required for the entire route for each fibre 
cable from the fibre-fed FDPs back to the pillar. 

► CalculateDuctsForFibreBackFromPillar 

Location: Found in the CalculateDuct module 

Purpose: Where point-to-point fibre is used, this calculates the duct required 
for the entire route for each fibre-fed FDP from its parent pillar back 
to the RAU. 

Where fibre rings are used, this calculates the duct required for the 
entire route for each pillar-pillar link in the ring(s). 

2.3.6 Backhaul determination phase 

Having calculated the copper and fibre networks for an urban deployment for the ESA, the 
backhaul requirements for each access node are then derived. For example, pillars may be too far 
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from the RAU to be linked by copper, in which case a large pair gains system (LPGS) is installed 
and a fibre link replaces the copper link. This is accomplished by the subroutine 
DetermineBackhaulForCopperServedAreas. 

DetermineBackhaulForCopperServedAreas 

Location: Found in the WirelessAndSatellite module 

Purpose: First of all, this subroutine analyses the cable between the copper 
nodes and the RAU, in order to remove double-counted cables. This 
is accomplished using the subroutine 
RemoveUrbanDoubleBackMainCable, as described below. 

Secondly, it identifies whether a copper node should in fact be an 
LPGS and, if so, whether it should have fibre, wireless or even 
satellite backhaul. It runs through each pillar in turn: 

• The RAU cannot be an LPGS, so it is labelled as a RAU. 

• For all other pillars, the maximum loop length across all the 
locations in the pillar cluster (from FDP to RAU) is calculated. 

• If this distance is less than a maximum threshold for using an 
LPGS(gdMaxCableDistanceBeforeUsingLPGS), then a pillar is 
still used and the jointing required between the pillar and the 
RAU is derived and stored in gdPillarRAUJointing(). 

• If this distance is higher than the threshold, then an LPGS is 
required. The type of backhaul link is then determined as follows: 

– if the network is either including all pillars in a fibre 
ring, or is linking all pillars with fibre-fed locations 
into fibre rings and this pillar has fibre-fed locations, 
then it will already have a backhaul ink via the fibre 
ring. So, we remove the pillar–RAU link, provided 
that it does not form part of the fibre ring 

– for the urban deployment, LPGS are otherwise 
assumed to be linked to the RAU by a fibre. 

Having completed the backhaul determination, the nature of each 
location in the ESA can then be finalised using the subroutine 
DetermineLocationType. 

► RemoveUrbanDoubleBackMainCable 
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Location: Found in the PillarClusterToPillarClustermodule 

Purpose: For each pillar cluster in turn, this subroutine considers the route that 
the cable takes from the pillar back to the RAU. Specifically,: 

• counts the number of times that this cable passes through each 
link in the trench network 

• reduces this count where it is more than 1 to remove instances 
where the cable doubles back on itself 

• adjusts the recorded length of the cable for the pillar in 
gdSheathLengthToConnectPillarClusters() accordingly 

► DetermineLocationType 

Location: Found in the OutputResults module 

Purpose: For the urban deployment, this subroutine first identifies all DP 
locations, labelling all other locations as FDPs. It then overwrites the 
main node locations, namely the RAU, the pillars and LPGS. 

2.3.7 Result storage phase 

The remaining outputs of the network asset volumes are printed to the output worksheet for the 
ESA by the subroutine OutputTheResults. 

OutputTheResults 

Location: Found in the OutputResults module 

Purpose: This prints the remaining network volumes to the output worksheet 
for the ESA in the relevant Access DATA workbook. 

Specifically, the subroutine: 

• calculates the average loop length for each pillar cluster 
• prints the network volumes for the cluster containing the RAU 
• prints the aggregated volumes for the ESA, including: 

– trench between pillars and the RAU 
– fibre sheath for the fibre rings 
– fibre length for the fibre rings 
– number of fibre rings 
– number of relay stations 

• prints the network volumes for every other pillar cluster 
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• prints the identity of the next pillar on the fibre ring for each 
pillar, if applicable 

• prints the fibre links from the RAU if there is more than one fibre 
ring (the line for the RAU cluster can only indicate one of these 
links) 

• prints the pillar indices for each DP cluster, into column U 
• prints the edges in the spanning trees at the DP–pillar and pillar–

RAU level of the network, using WriteConnectClustersResults 
• prints the incremental trench for the fibre rings, using 

WriteFibreRingResults 
• prints the duct requirements for each link in the trench network, 

using WriteDuctOutputs 
• identifies each location as being served by either copper or fibre 
• estimates the cable lengths by cable size, using 

CalculateTotalSheathLengthByCableSize, as explained below. 

► WriteFibreRingResults 

Location: Found in the BuildFibreRing module 

Purpose: Identifies the incremental trench links required for the fibre rings and 
calculates the additional manholes required (if any) on these links. 

► WriteDuctOutputs 

Location: Found in the CalculateDuct module 

Purpose: For each link in the trench network, the number of ducts required by 
type are calculated, determined by how many cables of each type 
there are passing through the link and the capacity of each type of 
duct. 

The number of ducts that are provisioned (based on the allowed 
multiples) is also determined for each link. The length of each link, 
using either crow-flies or p-function, is also derived. 

Finally, the type of pit required at each DP location is also 
determined. 

► CalculateTotalSheathLengthByCableSize 

Location: Found in the OutputResults module 

Purpose: For the urban deployment, this estimates the cable lengths by cable 
size within the DP clusters: 

• for each level of demand, the number of sheaths of each cable 
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size used to serve that demand are stored in the array 
glCableRequirementsByDemand() 

• across all locations, the sheath requirements for each cable size 
are then aggregated in the array gdSheathLengthByCableSize() 

• the total length required of each cable size is then printed in the 
output worksheet for the ESA 

• the sheath length by cable size within the distribution network is 
also printed here, having been pre-calculated in ApplyDijkstra. 

2.3.8 Assumption storage phase 

The assumptions used within the calculation are printed onto the output worksheet for the ESA, 
using the subroutines RecordAssumptions. 

RecordAssumptions 

Location: Found in the CommonCode module 

Purpose: This prints all of the assumptions used in the calculation of access 
network asset volumes. 

For an urban deployment, it prints: 

• capacity and distance constraints for the nodes used in the 
network 

• technical constraints for the fibre rings and copper jointing 
• cables used in the non-tapered distribution network (if applicable) 
• coefficients for the p–function used 
• coefficients for the proxy cost function 
• cost assumptions used (in the urban case, for the fibre and 

wireless backhaul cost comparisons for LPGS backhaul). 

Finally, in order to reduce congestion in the computer’s memory, the subroutine EraseArrays 
(found in the MainMacros modules) uses the Erase statement to destroy global arrays populated 
separately for each ESA, releasing the allocated memory. 

2.4 Rural deployment path 

There are thirteen phases when using a rural deployment for an ESA: 

• initial copper clustering phase, which is described in section 2.4.1 
• copper or wireless determination phase, which is described in section 2.4.2 
• copper clustering phase, which is described in section 2.4.3 
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• copper pillar cluster spanning tree phase, which is described in section 2.4.4 
• copper cluster connection phase, which is described in section 2.4.5 
• backhaul determination phase, which is described in section 2.4.6 
• fibre determination phase, which is described in section 2.4.7 
• copper result storage phase, which is described in section 2.4.8 
• wireless clustering phase, which is described in section 2.4.9 
• satellite determination phase, which is described in section 2.4.10 
• wireless backhaul determination phase, which is described in section 2.4.11 
• copper and fibre result storage phase, which is described in section 2.4.12 
• assumption storage phase, which is described in section 2.4.13. 

2.4.1 Initial copper clustering phase 

This is run through the subroutine AllClusteringMethods, which is found in the MainMacros 
module. Three subroutines are driven by AllClusteringMethods in the rural case: 

• IdentifyRAU 
• DivisiveClustering 
• PassDirectToPillarClusterLevel. 

These are explained in more detail in the following sub-sections. 

IdentifyRAU 

Location: Found in the Clustering module 

Purpose: Determines a location from a list of input locations to be a suitable 
location for the RAU in an ESA. Currently, each ESA in the Access 
DATA workbook uses the first location in the list as the location of 
the RAU, since that is where the actual location given by 
ExchangeInfo is stored. 

In this case, the value of the variable glStatedRAUvertex must be 
positive and the RAU is assumed to be at this location. Otherwise, the 
location closest to the demand-weighted centre of the locations in the 
ESA is used. There are three sets of objects that can be used for this 
calculation by IdentifyRAU: locations and pillars. 

In relation to the rural clustering phase, the individual locations are 
used. 
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DivisiveClustering 

In this case, FDPs are grouped directly into clusters served by pillars, using the subroutine 
DivisiveClustering. This clusters a set of locations based on a capacity and a distance constraint. 
For the rural deployment, the initial clustering stages are the same as the urban deployment. 

However, when the refinement stages start, only the following subroutines are used: 

• SimpleReassignment 
• Swap 
• FullOptimisation 
• HighDemandSimpleReassignment. 

These are reused frequently throughout the code for different clustering requirements and are 
explained below. All of the subroutines can move any locations in the rural deployment, since the 
FullAccessNetworkBuild subroutine will not calculate ESAs with both a rural deployment and a 
fibre ring deployment. 

PassDirectToPillarClusterLevel 

Location: Found in the Clustering module 

Purpose: This subroutines edits the arrays used so that the second stage of the 
clustering that occurs in the urban deployment is circumvented for the 
rural deployment. 

Pillar clusters are consolidated using ConsolidatePillars. This runs 
exactly as specified in the urban deployment in section 2.3.1, except 
that merges are stated to be possible only if the two pillar cluster 
taken together would satisfy the (absolute) pillar capacity constraint 
and distance constraint with their new pillar location. 

The pillar locations are identified using the subroutine IdentifyPillar. 

The subroutine TransferSmallCopperAreasToWireless is not used at 
this stage in the code: see section 2.4.3. 

2.4.2 Copper or wireless determination phase 

Up until this point, the path traced by the rural deployment has been almost identical to the urban 
deployment. The path then diverges into a subroutine called 
CalculateWirelessAndSatelliteServedDemand in the WirelessAndSatellite module, which governs 
the rest of the rural deployment. 
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The first step is to determine, on a cost basis, whether a location should be served by copper or 
wireless technology (the ‘copper-wireless decision’). This is completed by the subroutine 
ChooseRadioOrCopperCluster. 

ChooseRadioOrCopperCluster 

Location: Found in the WirelessAndSatellite module 

Purpose: The pillar locations that have already been calculated are stored. The G–NAF co-ordinates 
corresponding to each of the locations are recalled and then the locations are clustered 
according to the wireless assumptions. 

The decision then begins by assuming that all of the pillar locations are served by copper, 
with everything else served by wireless. 

As described in the main documentation, two deployment scenarios are investigated 
(enumerated by the variable lComparison). Each of these deployment scenario checks through 
each of the pillar clusters in turn twice (enumerated by the variable lIteration). 

 

 

 

The value of lComparison and lIteration determine the copper capacity/distance constraints 
used in the heart of the subroutine, as summarised in Table 2.2 and Table 2.3 below: 

 lComparison =1 lComparison =2   

lIteration=1 Minimum (or ‘critical’) capacity (~20 units of demand) 

 

  

lIteration=2 Standard pillar capacity used in copper clustering 

 

  

Table 2.2: 

Copper capacity 

constraints 

employed 

[Source: 

Analysys ] 

 
 lComparison =1 lComparison =2   

lIteration=1 Based on distance from pillar LPGS assumed in all cases,   

Table 2.3: 

Copper distance 
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lIteration=2   

 
The heart of the subroutine proceeds as follows and runs for each deployment scenario and 
pass of the pillar locations: 

• The first pillar cluster to be checked is always the RAU location. 

• For the current pillar location, the wireless-fed point closest to that pillar is identified and 
then the point in the copper cluster that is closest to this wireless-fed point is identified. 

• The wireless-fed location is assigned to this copper cluster and the average cost per unit 
demand are calculated for: 

– the copper cluster 
– the original wireless cluster. 

• If the average copper cost is lower than the average wireless cost, then the pillar location 
is re-calculated assuming that this location is now fed by copper. 

• If the updated copper cluster is found to satisfy the distance constraint, then the wireless-
fed location becomes a copper-fed location permanently. The total costs of each cluster 
are also updated. 

Several clean-up processes then refine the outputs for each of the deployment scenarios. The 
first checks whether a copper cluster that has survived the process is in fact surrounded by 
another copper cluster. If so, then the two clusters are merged. Secondly, any clusters that are 
smaller than the minimum capacity are converted to wireless. The copper and wireless cluster 
costs are updated accordingly. 

The deployment scenario that gives the lowest total cost is taken as the final output of the 
algorithm. Finally, each location is provisionally stated in the output worksheet for the ESA as 
being served by either copper or wireless based on this decision. 

 

Having completed the copper-wireless decision, CalculateWirelessAndSatelliteServedDemand 
checks whether the RAU is served by wireless or copper. If the former is true, but there exist other 
locations served by copper, then the RAU is reset to be served by copper, to be consistent with the 
scorched-node assumption. 
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2.4.3 Copper clustering phase 

Having identified the subset of points that are said to be served by copper, these points are fed into 
the AllClusteringMethods subroutine. This executes IdentifyRAU and DivisiveClustering as 
described in section 2.4.1. However, when executing the PassDirectToPillarClusterLevel 
subroutine, there is an extra stage that is completed at the end using the subroutine 
TransferSmallCopperAreasToWireless. 

TransferSmallCopperAreasToWireless 

Location: Found in the WirelessAndSatellite module 

Purpose: This subroutine is used after the copper-wireless decision and looks at 
the subset of points designated as served by copper following their re-
clustering using the copper assumptions. If clusters are identified 
which have less than the minimum capacity, then the points within 
these clusters are stated to be served by wireless and the necessary 
arrays are updated. 

2.4.4 Copper pillar cluster spanning tree phase 

As with the urban deployment, ConstructTreeFollowingClusterMainPointIdentification is then 
used to derive minimum spanning trees within each of the pillar clusters. As stated previously, the 
rural deployment does not use DP clusters. In the rural deployment, it is often attempting to create 
a spanning tree of over 300 points, so this process can take much longer per cluster than in the 
urban deployment. This begins with the subroutines GetMaxPointsInCluster and 
SetupArraysForSpanningTree. 

GetMaxPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Identifies the maximum number of points in a pillar cluster. 

SetupArraysForSpanningTree 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Dimensions the key arrays for the minimum spanning tree process: 

• glUnattachedPoint() – the list of locations in the cluster that are 
unattached at any point in the algorithm 
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• glAttachedPoints() – the list of locations in the cluster that are 
attached at any point in the algorithm 

• glVertexRoute() – for any location, the location that it passes 
through in order to get back to the node location 

• gdDistanceMatrix() – stores the distance between any two points 
in the cluster 

• gobjEdges() – stores the vertices and lengths associated with each 
edge in the spanning tree. 

Following these two subroutines, each cluster is then treated in turn. The following are used in 
order to create and store the minimum spanning trees: 

• SetupPointsInCluster – identifies the central point in the cluster 
• SetupGdDistanceMatrix – calculates the required distances  
• ConstructTree – constructs the minimum spanning tree for the cluster 
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node 
• GetTotalDistance – calculates the total trench within the tree 
• GetRuralTaperedSheathLength/GetRuralNonTaperedSheathLength – calculates the total 

copper sheath within the tree depending on the nature of the cabling network deployed 
• GetRuralTaperedCopperLength/GetRuralNonTaperedCopperLength – calculates the total 

copper pair length within the tree depending on the nature of the cabling network deployed 
• WriteCopperNetworkResults – stores the list of edges in the spanning tree on the output 

worksheet for the ESA. 

SetupPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Calculates the number of points in the cluster. 
• Identifies the pillar location for the cluster and states this location 

as the central point cp. 

SetupGdDistanceMatrix 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For the rural deployment, calculates the p-function distance between 
any two pairs of points in the pillar cluster and stores these distances 
in the array gdDistanceMatrix(). 
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ConstructTree 

In order to derive the spanning tree for the cluster, the algorithm begins with the central point (cp) 
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached. 
Locations are then added to the tree incrementally and the lists of attached and unattached 
locations are updated. 

For each incremental addition, the algorithm cycles through each pair of attached and unattached 
points and calculates the average cost per line of the whole tree were the two points linked together 
by a trench and a cable. This average cost is determined by AverageCostPerLine. 

► AverageCostPerLine 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For the rural deployment, it determines: 

• the extra capacity and the copper pair requirements (c) needed to 
serve the unattached point, depending on the nature of the cabling 
network within the pillar cluster: 

– for tapered, 
glCablingForRuralDemandIncUtilisation() is used, 
which was populated using inputs from the ‘Inputs’ 
worksheet and accounts for the cable utilisation 
assumed in the network 

– for non-tapered, GetNonTaperedCableSize and 
GetNonTaperedSheath are used 

• the length of extra trench distance (d) to link the attached and 
unattached point. 

The cost of the new link is then calculated using the expression 

k1*d + k2*c + k3*d*c + k4*√c 

and calculates the new cost per unit of demand for the entire tree. 

For each unattached point, the edge to an attached point that gives the lowest new average cost per 
line is stored in the array objEdgeList() using AddToEdgeList. 

► AddToEdgeList 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Having identified the best edge by which to join a particular point to 
the existing tree, this subroutine stores the vertices of this edge and its 
average cost per unit of demand. 
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This is repeated for every unattached point. The edge in objEdgeList() that gives the lowest new 
average cost per line is then linked to the tree using AddCheapestEdgeInListToObjEdges. 

► AddCheapestEdgeInListToObjEdges 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Adds the best link in objEdgeList(), in terms of average cost per 
line, to the list of edges for the minimum spanning tree. 

• Updates the array glVertexRoute() for this new edge in the tree, 
defined by:  

 glVertexRoute(unattached location on new edge) = attached 
locations on new edge 

• Updates the total copper length required to link the location all 
the way back to the node. 

The number of unattached points is reduced by 1 and the lists of attached and unattached points 
updated using IdentifyAttachedAndUnattachedPoints, which can be found in the 
ModifiedPrimSpanningTree module. 

The loop in ConstructTree continues until all locations in the cluster have been attached to the 
cluster node. 

StoreRoutes 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For each point P in the cluster, stores the point Q that it passes back 
through in order to reach the cluster node, with the array defined as:  

glRouteToCentre(P)=Q 

GetTotalDistance 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total trench in the spanning tree for a pillar, by cycling 
through all points P in the cluster and calculating the distance 
between P and the point that it passes through on it way back to the 
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pillar. 

GetRuralTaperedSheathLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total cable sheath in the spanning tree assuming that 
the cabling is tapered. For each point P it calculates the distance 
between P and its predecessor back to the pillar. 

The number of sheaths needed for the cabling are determined on the 
basis of the downstream capacity at that point, using the array 
glCablingForRuralDemandIncUtilisation(). This accounts for the 
assumed utilisation of cable. 

The number of sheaths is then multiplied by the length of the link 
between P and its predecessor and this is aggregated onto the total. 

GetRuralNonTaperedSheathLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total cable sheath in the spanning tree assuming that 
the cabling is non-tapered. For each point P it calculates the distance 
between P and its predecessor back to the pillar. 

The number of sheaths needed for the cabling are determined on the 
basis of the downstream capacity at that point, using the function 
GetNonTaperedSheath, which is explained below. This accounts for 
the assumed utilisation of cable. 

The number of sheaths is then multiplied by the length of the link 
between P and its predecessor and this is aggregated onto the total. 

GetRuralTaperedCopperLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total copper pair length in the spanning tree assuming 
that the cabling is tapered. For each point P, it calculates the distance 
between P and its predecessor back to the pillar. 

The number of copper pairs needed for the cabling are determined on 



 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 47 

9995-203   

the basis of the downstream capacity at that point, using the array 
glCablingForRuralDemandIncUtilisation(). This accounts for the 
assumed utilisation of cable. 

The number of copper pairs is then multiplied by the length of the 
link between P and its predecessor and this is aggregated onto the 
total. 

In addition, the size of the sheath deployed is derived and the total 
length required of that size is aggregated into the array 
gdDistnNetworkSheathBySize(), which stores total length of sheath 
by cable size. 

GetRuralNonTaperedCopperLength 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Calculates the total cable pair length in the spanning tree assuming 
that the cabling is non-tapered. For each point P, it calculates the 
distance between P and its predecessor back to the pillar. 

It determines the number of pairs needed for the cabling on the basis 
of the downstream capacity at that point, using the functions 
GetNonTaperedSheath and GetNonTaperedCableSize, which are 
explained below. These account for the assumed utilisation of cable. 

The number of copper pairs is then multiplied by the length of the 
link between P and its predecessor and this is aggregated onto the 
total. 

In addition, the size of the sheath deployed is derived and the total 
length required of that size is aggregated into the array 
gdDistnNetworkSheathBySize(), which stores total length of sheath 
by cable size. 

► GetNonTaperedSheath 

Location: Found in the ClusterToCluster module 

Purpose: Given a capacity in terms of units of demand, it determines the cable 
size required in a non-tapered network. This accounts for the assumed 
level of cable utilisation in the distribution network. 

Non-tapered cabling is assumed to come in only two types: a main 
cable size and a minor cable size. If the capacity required, having 
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accounted for utilisation, is smaller than the minor cable capacity then 
the minor cable is used. Otherwise, the necessary multiples of the 
main cable is used. 

If the main cable is used, then the number of sheaths is calculated by 
rounding up the ratio of the capacity required and the main cable size. 

If the minor cable size is assumed to be zero, then the main cable size 
is always used. This is a default assumption. 

► GetNonTaperedCableSize 

Location: Found in the ClusterToCluster module 

Purpose: Given a capacity in terms of units of demand, it determines the cable 
size required in a non-tapered network. This accounts for the assumed 
level of cable utilisation in the distribution network.  

Non-tapered cabling is assumed to come in only two types: a main 
cable size and a minor cable size. If the capacity required, having 
accounted for utilisation, is smaller than the minor cable capacity then 
the minor cable is used. Otherwise, the main cable is used. 

WriteCopperNetworkResults 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Writes the points and their co-ordinates in the output worksheet 
for the ESA (in rows BF–BM) that define every edge in the 
spanning trees for the pillar clusters. 

• Determines how many extra pits are required along these edges. 

• Writes the copper locations, their co-ordinates and their parent 
pillar in the output worksheet for the ESA (in rows BX–CD). 

2.4.5 Copper cluster connection phase 

This phase is run through the ConnectClusters subroutine, which is found in the ClusterToCluster 
module. 

After this revision, we then join up all the pillar locations in the ESA through the subroutine 
RunAtRuralPillarClusterLevel, which also lies in ClusterToCluster module. This subroutine is 
only used if there is more than one pillar cluster. 
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RunAtRuralPillarClusterLevel executes several subroutines: 

• SetUpClusterPairIndex 
• IndexPointsWithinPillarCluster 
• SortPairsOfPoints 
• RoutePointsForRuralPillarCluster 
• ApplyDijkstra (contained within RoutePointsForCluster). 

SetUpClusterPairIndex 

Location: Found in the ClusterToCluster module 

Purpose: Indexes pairs of pillars in an ESA so that each unordered pair occurs 
exactly once: use triangular numbers: e.g. for four pillars, (P1,P2) → 
1, (P1,P3) → 2, (P1,P4) → 3, (P2,P3) → 4, (P2,P4) → 5, (P3,P4) → 
6 

IndexPointsWithinPillarCluster 

Location: Found in the ClusterToCluster module 

Purpose: Creates a new indexing PointIndex() and its inverse 
InversePointIndex() that are effectively identity mappings in this 
case: this is included for the process to have a consistent structure 
with the urban equivalents. 

Following IndexClusterWithinPillarCluster, the pillar that is the RAU location is identified. 

SortPairsOfPoints 

Location: Found in the ClusterToCluster module 

Purpose: • For each pair of pillars in the ESA: 
– calculate how many unique pairs of points there are 

which have one point from each pillar cluster 
– explicitly identify these pairs of points and, for each 

pair, calculate the distance between the two points 
using the p-function 

– sort the pairs of points in order of this distance, with 
the closest pair of points listed first. 
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RoutePointsForPillarCluster 

Location: Found in the ClusterToCluster module 

Purpose: • Finds the least proxy cost route for connections between pillar 
clusters and then connections to the RAU. 

• This assumes that, if the route for a pillar location back to the 
RAU goes through other pillar clusters, then it passes through 
their pillar locations. 

• It also assumed that each pillar–RAU link is a discrete cable. 

• The proxy cost function when costing up linkages with new 
trench assume additional trench cost [uses a cost multiplier of M1 
= k1 * + (k3 * pillar–RAU cabling capacity CD) + (k4 * √CD), to 
multiply by the new trench length LN ]. 

• The proxy cost function when costing up linkages through 
existing trenches assume no additional trench cost [uses a cost 
multiplier of M2 = (k3 * pillar–RAU cabling capacity CD) + (k4 * 
√CD), to multiply by the existing trench length LE ]. 

• When costing the links between any two pillar locations, for each 
unique pair of pillar clusters: 

– identify the pair of points (with 1 from each pillar 
cluster) which are the closest (a distance d apart, 
calculated with the p–function) 

– calculate the sum of their distances back to their 
respective pillars, DT. 

• The proxy cost of linking the two pillars clusters together through 
these points is then assumed to be (M1 * d) + (M2 * DT). 

• For comparing the costs of linking two pillars, assuming a 
constant pillar–RAU cabling capacity means jointing proxy costs 
will be the same for all pillar cluster pairs, so it is not included in 
our sum (so k2 is not included above). 

• For each pair of pillar clusters, identify the pair of points which 
give the lowest linking proxy cost. 

• Add on the jointing cost for each of these best linkages. 

• This gives us a fully meshed set of linkages between all pillars. 
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• These linkages are stored in the array C2CEdgePillar(). 

ApplyDijkstraForRuralPillarClusters (within RoutePointsForRuralPillarCluster). 

Location: Found in the ClusterToCluster module 

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route 
between any pillar and the RAU, using these linkages. 

• Assume, provisionally, that all pillars are connected directly to 
the RAU. 

• Start with the RAU. 

• For every other pillar, identify from storage the requirements for 
linking it to the RAU: 

– extra trench 
– cost of linking the two pillars 
– cabling cost of linking the two pillars (i.e. excluding 

trench cost) 
– (effectively) total sheath length between them. 

• Then, execute the following loop whilst there are still 
unconnected pillars. 

• For a given (connected) pillar i (with i starting off as the RAU), 
look through the remaining unconnected pillars and decide which 
pillar (j) is the most cost effective to link directly to pillar i. 

• Then, for each unconnected pillar k, test to see if there is a 
cheaper proxy cost in linking it back to the RAU by going 
through i, or via the current provisional path, by: 

– calculating all the extra jointing costs of going 
through pillar i (possibly via other pillars) back to the 
RAU, rather than its existing path 

– if ([total cabling cost of linking k to RAU via i] 
+[extra jointing costs of linking k to RAU via i] + [the 
cost of linking k to i]) < cost of linking k to the RAU 
directly, then set the link for k to be via pillar i. 

• Set i to be the pillar that was just connected (j) and return to the 
start of the loop. 

• When all pillars have been connected, calculate: 
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– total extra trench required to join all pillars to the 
RAU 

– incremental copper sheath required to link the pillar 
location back to the RAU, for each pillar cluster 

– for each pillar, the previous pillar on its way back to 
the RAU, stored in glPreviousPillarCentre(). 

 

As the last step in ConnectCluster, the subroutine CalculateDuctByType is used to calculate the 
duct requirements within each pillar cluster.  

CalculateDuctByType 

Location: Found in the CalculateDuct module 

Purpose: Identifies the number of sheaths by cabling type within each link in 
the pillar clusters, as preparation for the derivation of the number of 
ducts within each link in the subroutine WriteDuctOutputs.  

If the cabling within the pillar cluster is assumed to be tapered, then 1 
sheath is assumed to be required within each link. 

If the cabling within the pillar cluster is assumed to be non-tapered, 
then the sheath requirements are derived with GetNonTaperedSheath. 

For each link in the pillar cluster networks, the number of sheaths 
required is calculated and stored as intra-pillar (copper) duct. 

 

Back in the subroutine CalculateWirelessAndSatelliteServedDemand, the number of branching kits 
required in the network is calculated and then the function GetRuralJointingCosts is used to 
calculate the jointing required in the network. 

GetRuralJointingCosts 

Location: Found in the WirelessAndSatellite module 

Purpose: Calculates the jointing requirements within the pillar clusters. For 
distance-related jointing, we assume a maximum distance that cable 
can be pulled within the distribution network without a full joint. 

Firstly, for each location, it determines the number of copper pairs 
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that will be heading back towards the pillar at that location, having 
accounted for the utilisation of the cable. For the tapered case, this 
uses glCablingForRuralDemandIncUtilisation. For the non-tapered 
case, this uses GetNonTaperedCableSize and GetNonTaperedSheath. 

The demand-related jointing is calculated first on an edge-by-edge 
basis. For the non-tapered case, this is taken to be the demand at that 
point. For the tapered case, it is taken to be the demand at that point if 
it is an extreme point. Otherwise, it is taken to be the total demand 
downstream of that point. If the edge within the link exceeds the 
maximum pulling distance in length, then we include additional 
jointing as required within the edge. 

The distance-related jointing is only calculated explicitly for the non-
tapered case. For each location, its predecessor back to the pillar is 
calculated. The cable distance of both locations back to the pillar are 
known. If a multiple of the maximum pulling distance is passed 
within the link, then a full joint is assumed to occur on the cable at 
the location nearest to the pillar. 

Back in the subroutine CalculateWirelessAndSatelliteServedDemand, the demand fed by fibre in 
each pillar cluster is calculated using the subroutine CalculateFibreUnitsOfDemand. 

CalculateFibreUnitsOfDemand 

Location: Found in the Clustering module 

Purpose: Aggregates fibre demand on a pillar cluster basis for the purpose of 
printing the outputs for this ESA. For each fibre-fed location, one unit 
of demand is assumed to be still fed by copper: the remainder by 
copper. 

2.4.6 Backhaul determination phase 

Having calculated the copper and fibre networks for a rural deployment for the ESA, the backhaul 
requirements for each access node are then derived. 

For example, pillars may be too far from the RAU to be linked by copper, in which case a LPGS is 
installed and a backhaul link replaces the copper link. This is accomplished by the subroutine 
DetermineBackhaulForCopperServedAreas. 
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DetermineBackhaulForCopperServedAreas 

Location: Found in the WirelessAndSatellite module 

Purpose: First of all, this subroutine analyses the cable between the copper 
nodes and the RAU, in order to remove double-counted cables. This 
is accomplished using the subroutine 
RemoveRuralDoubleBackMainCable, as described below. 

Secondly, it identifies whether a copper node should in fact be an 
LPGS and, if so, whether it should have fibre, wireless or even 
satellite backhaul. It runs through each pillar in turn: 

• The RAU cannot be an LPGS, so it is labelled as a RAU. 

• For all other pillars, the maximum loop length across all the 
locations in the pillar cluster (from FDP to RAU) is calculated. 

• If this distance is less than a maximum threshold for using an 
LPGS (gdMaxCableDistanceBeforeUsingLPGS), then a pillar is 
still used and the jointing required between the pillar and the 
RAU is derived and stored in gdPillarRAUJointing(). 

• If this distance is higher than the threshold, then an LPGS is 
required. The type of backhaul link is then determined as follows: 

• If the network is either including all pillars in a fibre ring, or is 
linking all pillars with fibre-fed locations into fibre rings and this 
pillar has fibre-fed locations, then it will already have a backhaul 
link via the fibre ring. So, we remove the pillar–RAU link, 
provided that it does not form part of the fibre ring. The rural 
deployment should never use fibre rings, so this is irrelevant for 
the rural case. 

• Otherwise, the cost of linking the LPGS by a fibre and a wireless 
link is calculated. The wireless cost includes the cost of relay 
stations, which are derived by using 
DeriveWirelessLinkQuantities, which is explained below. 

• If the fibre cost is the cheaper option, then the pillar–RAU copper 
link is replaced with a fibre cable. 

• If wireless is the cheaper option, but needs more than a certain 
number of relay stations (glMaxNumRelaysInWiBackhaul), then 
the copper link is replaced with a satellite link. 
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• Otherwise, the incremental trench and copper link is removed and 
the LPGS is assumed to be served by a wireless link. The number 
of relay stations required is also stored. 

• Having completed this determination, the nature of each location 
is then determined using DetermineLocationType, as described 
below. 

► RemoveRuralDoubleBackMainCable 

Location: Found in the PillarClusterToPillarClustermodule 

Purpose: For each pillar cluster in turn, this subroutine considers the route that 
the cable takes from the pillar back to the RAU. Specifically,: 

• counts the number of times that this cable passes through each 
link in the trench network 

• reduces this count where it is more than 1 to remove instances 
where the cable doubles back on itself 

• adjusts the recorded length of the cable for the pillar in 
gdSheathLengthToConnectPillarClusters() accordingly 

► DeriveWirelessLinkQuantities 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Given the length of a wireless link, this derives how many relay 
stations are required on the link, by dividing the link distance by the 
assumed maximum distance of a wireless link without a relay station 
(~30km, as defined in the ‘Inputs’ worksheet of the Access CODE 
workbook) and then rounding up. 

► DetermineLocationType 

Location: Found in the OutputResults module 

Purpose: For the rural deployment, this subroutine first identifies all copper 
points as DPs and all wireless locations as FDPs. It then overwrites 
the main node locations, namely the RAU, the pillars and LPGS. 

 

The duct required to link up the pillars and LPGS to the RAU is calculated using the subroutine 
CalculateDuctBetweenRuralPillars. 
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CalculateDuctBetweenRuralPillars 

Location: Found in the CalculateDuct module 

Purpose: For the rural deployment, for each pillar/LPGS, this subroutine 
identifies the full route taken back to the RAU and inserts a duct in 
the relevant trenches. Ducts for pillar–RAU and LPGS–RAU links 
are recorded separately. 

2.4.7 Fibre determination phase 

Having completed the trench network for the copper network, the algorithm then seeks to overlay 
a fibre network to serve the locations of high demand. For a rural deployment, this can only be 
done using point-to-point links. This is handled by the subroutine 
LinkFibrePointsDirectlyToPillar, which is found in the BuildFibreRing module. 

LinkFibrePointsDirectlyToPillar 

Location: Found in the BuildFibreRing module 

Purpose: This calculates the fibre sheath and length requirements for joining 
each fibre-fed location back to its parent RAU via its parent DP and 
pillar. This uses the path determined by the nominal unit of demand 
assigned to each fibre-served location in the copper network. 

This function does not need incremental trench, since the existing 
trench network is assumed to be used as the path back to the RAU. 

For the rural deployment: 

• Fibre-fed locations are flagged in the array bolPointFedByFibre(). 

• The fibre sheath needed to join each fibre-fed location back to its 
parent RAU is calculated, by using the same path followed by the 
copper network. 

• The fibre length needed to join each fibre-fed location back to its 
parent RAU is calculated for each pillar cluster, by multiplying 
the total FDP–DP, DP–pillar fibre sheath lengths by their 
respective assumed fibre cable sizes. 

• The pillar–RAU fibre sheath length is assumed to be the same as 
that for the analogous connection in the copper network. 

• The pillar–RAU fibre length is assumed to be the fibre sheath 
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length multiplied by the assumed fibre cable size in the DP–pillar 
part of the network. 

• A discrete cable is assumed for each fibre-fed location all the way 
back to the RAU (point-to-point architecture). 

• The amount of fibre-specific duct required is calculated using 
CalculateFibreDuctByType for links back to the pillar and 
CalculateDuctsForFibreBackFromPillar for links from the pillar 
back to the RAU. 

► CalculateFibreDuctByType 

Location: Found in the CalculateDuct module 

Purpose: This calculates the duct required for the entire route for each fibre 
cable from the fibre-fed FDPs back to the pillar. 

► CalculateDuctsForFibreBackFromPillar 

Location: Found in the CalculateDuct module 

Purpose: Fibre rings can never be used in the rural deployment, so this 
calculates the duct required for a point-to-point fibre link from each 
fibre-fed FDP, starting from the parent pillar and going back to the 
RAU. 

2.4.8 Copper result storage phase 

The remaining outputs of the copper network asset volumes are printed to the output worksheet for 
the ESA by the subroutine OutputTheCopperResults. 

OutputTheCopperResults 

Location: Found in the OutputResults module 

Purpose: This prints the remaining network volumes to the output worksheet 
for the ESA in the relevant Access DATA workbook. 

Specifically, the subroutine: 

• calculates the average loop length for each pillar cluster 
• prints the network volumes for the cluster containing the RAU 
• prints the aggregated volumes for the ESA, including the trench 

between pillars and the RAU and the number of relay stations 
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• prints the network volumes for every other pillar cluster 
• prints the pillar cluster indices for each location, via 

WriteCopperClusterResults, as explained below 
• prints the edges in the spanning trees at the pillar–RAU level of 

the network, using the subroutine 
WriteConnectRuralClustersResults, as explained below 

• prints the duct requirements for each link in the trench network, 
using WriteDuctOutputs, as explained below 

• estimates the cable lengths by cable size, using the subroutine 
CalculateTotalSheathLengthByCableSize, as explained below. 

► WriteCopperClusterResults 

Location: Found in the Clustering module 

Purpose: Prints the pillar cluster alongside each copper-fed location. 

► WriteConnectRuralClustersResults 

Location: Found in the PillarClusterToPillarCluster module 

Purpose: Prints the incremental trench links required to join the pillars and 
LPGS with fibre backhaul to the RAU. Also calculates the number of 
extra manholes needed along these links. 

► WriteDuctOutputs 

Location: Found in the CalculateDuct module 

Purpose: For each link in the trench network, the number of ducts required by 
type are calculated, determined by how many cables of each type 
there are passing through the link and the capacity of each type of 
duct. 

The number of ducts that are provisioned (based on the allowed 
multiples) is also determined for each link. The length of each link, 
using either crow-flies or p-function, is also derived. 

Finally, the type of pit required at each DP location is also 
determined. 

► CalculateTotalSheathLengthByCableSize 

Location: Found in the OutputResults module 

Purpose: For the rural deployment, the sheath length by cable size is estimated 
slightly differently depending on whether the network is tapered or 
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non-tapered.  

In the tapered case, the sheath requirements for each point and its 
predecessor back to the pillar are calculated individually using 
glCablingForRuralDemandIncUtilisation and then aggregated by 
cable size.  

In the non-tapered case, the sheath requirements for each point and its 
predecessor back to the pillar are calculated individually using 
GetNonTaperedCableSize and GetNonTaperedSheath and then 
aggregated by cable size. 

The sheath by cable size is then printed onto the output worksheet for 
the ESA. 

2.4.9 Wireless clustering phase 

Having completed the copper and fibre deployments, a wireless phase is undertaken by the 
subroutine CalculateWirelessandSatelliteServedDemand if either 

• There are points that have been designated as being served by wireless. 

• There are LPGS that are served by wireless backhaul, which must be linked back to the RAU 
as part of a wireless backhaul network. 

For each wireless-fed location, the co-ordinates of its corresponding location from the G–NAF are 
restored and these co-ordinates are used to cluster these locations using the wireless assumptions 
and the subroutine DivisiveClustering in the Clustering module. 

2.4.10 Satellite determination phase 

When the wireless locations have been clustered, CalculateWirelessandSatelliteServedDemand 
calculates the cost of serving each wireless cluster by wireless or by satellite. 

The wireless cost of a cluster is given by: 

Cost of the wireless BTS + (Number of locations in cluster × Cost of a wireless CPE) 

The satellite cost of a cluster is given by: 

(Number of locations in cluster × Cost of connecting a location with satellite) 

If a cluster is found to have a higher wireless cost, then it is assumed to be served by satellite, so 
the BTS is not needed for the consideration of the wireless backhaul network. 
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2.4.11 Wireless backhaul determination phase 

As stated above, a wireless backhaul network is required if there are BTS and/or LPGS with 
wireless backhaul that need to be connected back to the RAU. For each cluster served by a 
wireless BTS, the demand-weighted centre is calculated. The data for the wireless clusters is then 
stored and a set of points is created consisting of (in order): 

• the RAU 
• all LPGS with wireless backhaul 
• wireless BTS. 

The subroutine ConstructTreeForWirelessBTS is then used to create a minimum spanning tree of 
these points. This can be found in the ModifiedPrimSpanningTree module and begins with the 
subroutines GetMaxPointsInCluster and SetupArraysForSpanningTree. 

GetMaxPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Identifies the number of nodes in the wireless backhaul network. 

SetupArraysForSpanningTree 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: Dimensions the key arrays for the minimum spanning tree process: 

• glUnattachedPoint() – the list of locations in the cluster that are 
unattached at any point in the algorithm 

• glAttachedPoints() – the list of locations in the cluster that are 
attached at any point in the algorithm 

• glVertexRoute() – for any location, the location that it passes 
through in order to get back to the node location 

• gdDistanceMatrix() – stores the distance between any two points 
in the cluster: here, it is calculated to be the crow-flies distance 

• gobjEdges() – stores the vertices and lengths associated with each 
edge in the spanning tree. 

Following these two subroutines, each cluster is then treated in turn. The following subroutines are 
used in order to create and store the minimum spanning trees: 

• SetupPointsInCluster – identifies the central point in the cluster 
• ConstructTree – constructs the minimum spanning tree for the cluster 
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node 
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• WriteWirelessNetworkResults – stores the list of edges in the spanning tree on the output 
worksheet for the ESA. 

SetupPointsInCluster 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • In this case, we are creating a single backhaul network, so all the 
points we are considering are in the cluster. 

• The main node has been set up to be the RAU, which is identified 
and stated to be the central point cp. 

ConstructTree 

In order to derive the spanning tree for the cluster, the algorithm begins with the central point 
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached. 
Locations are then added to the tree incrementally and the lists of attached and unattached 
locations are updated. 

For each incremental addition, the algorithm cycles through each pair of attached and unattached 
points and calculates the average cost per line of the whole tree were the two points linked together 
by a trench and a cable. This average cost is determined by AverageCostPerWirelessLink. 

► AverageCostPerWirelessLink 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For the wireless backhaul network, it determines: 

• The extra backhaul capacity (c) required to serve the unattached 
point, using the subroutine GetBackHaulMultiplierNeeded, in the 
WirelessAndSatellite module. 

• The crow-flies distance (d) between the attached and unattached 
point. 

• The number of relay stations (n) required, derived using 
DeriveWirelessLinkQuantities. 

The cost of the new link is then calculated using the expression: 

k1*d + k2*c + k3*n 
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and calculates the new cost per unit of demand for the entire tree. 

For each unattached point, the edge to an attached point that gives the lowest new average cost per 
line is stored in the array objEdgeList() using AddToEdgeList, which can be found in the 
ModifiedPrimSpanningTree module. 

This is repeated for every unattached point. The edge in objEdgeList() that gives the lowest new 
average cost per line is then linked to the tree using 
AddCheapestWirelessLinkInLinkListToObjEdges. 

► AddCheapestWirelessLinkInLinkListToObjEdges 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Adds the best link in objEdgeList(), in terms of average cost per 
unit of demand, to the list of edges for the minimum spanning 
tree. 

• Updates the array glVertexRoute() for this new edge in the tree, 
defined by:  

 glVertexRoute(unattached location on new edge) = attached 
locations on new edge 

• Updates the total capacity and costs required to link the location 
all the way back to the RAU. 

The number of unattached points is reduced by 1 and the lists of attached and unattached points 
updated using IdentifyAttachedAndUnattachedPoints, which can be found in the 
ModifiedPrimSpanningTree module. 

The loop in ConstructTree continues until all locations in the cluster have been attached to the 
cluster node. 

StoreRoutes 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: For each point P in the cluster, stores the point Q that it passes back 
through in order to reach the cluster node, with the array defined as  

glRouteToCentre(P)=Q 
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WriteNetworkResults 

Location: Found in the ModifiedPrimSpanningTree module 

Purpose: • Writes the location co-ordinates in the output worksheet for the 
ESA (in rows BF–BM) that define every edge in the spanning 
trees for the wireless backhaul network. 

• Classifies each link as either wireless LPGS–BTS, BTS–BTS, 
BTS–RAU, BTS–wireless LPGS, wireless LPGS– 
wireless LPGS. 

 

For each edge in the wireless backhaul network, the number of relay stations is calculated using 
DeriveWirelessLinkQuantities and aggregated. Finally, all the wireless locations are then restored. 

2.4.12 Wireless and satellite result storage phase 

Having derived the wireless clusters and backhaul network, the network asset volumes for these 
clusters are printed to the output worksheet for the ESA by the subroutine 
OutputTheWirelessAndSatelliteResults. 

OutputTheWirelessAndSatelliteResults 

Location: Found in the OutputResults module 

Purpose: This prints the remaining network volumes to the output worksheet 
for the ESA in the relevant Access DATA workbook. 

Specifically, the subroutine: 

• prints the number of wireless relay stations required 

• prints out network volumes for the RAU, which can depend on 
whether the ESA has copper deployed or not 

• prints out network volumes for wireless clusters using 
OutputAWirelessRow 

• prints out network volumes for satellite clusters using 
OutputASatelliteRow 

• prints the cluster indices for each location in a wireless or satellite 
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cluster using WriteWirelessClustersResults. 

► WriteWirelessClustersResults 

Location: Found in the OutputResults module 

Purpose: For each location in a wireless cluster, a cluster index is printed. 
These are enumerated so that an ESA containing both copper, 
wireless and satellite clusters will have a unique index for each 
cluster. 

Back in the CalculateWirelessAndSatelliteServedDemand subroutine, each location is then 
identified as being served by copper , wireless or satellite. The original set of all points are then 
restored to the main array. 

2.4.13 Assumption storage phase 

The assumptions used within the calculation are printed onto the output worksheet for the ESA, 
using the subroutines RecordAssumptions. 

RecordAssumptions 

Location: Found in the CommonCode module 

Purpose: This prints all of the assumptions used in the calculation of access 
network asset volumes. 

For a rural deployment, it prints: 

• capacity and distance constraints for the nodes used in the 
network 

• technical constraints for the copper jointing 
• cables used in the non-tapered distribution network (if applicable) 
• coefficients for the p–function used 
• coefficients for the proxy cost functions 
• cost assumptions used (in the rural case for the fibre and wireless 

backhaul cost comparisons for LPGS backhaul, the copper and 
wireless cost-based decision and the satellite decision). 

Finally, in order to reduce congestion in the computer’s memory, the subroutine EraseArrays 
(found in the MainMacros modules) uses the Erase statement to destroy global arrays populated 
separately for each ESA, releasing the allocated memory. 
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3 Script for the core network algorithms 

3.1 Introduction 

Visual Basic code has been developed, using the compiler in Excel, for the purpose of determining 
the efficient backhaul routes, using a spur and ring topology, from the local exchanges (LEs) to the 
local access switch (LAS) (or their NGN equivalents). 

This chapter outlines the structure of the underlying code, which can be located in the Excel 
workbook LE_LAS_ring.xls. 

The code is divided into two main programs: 

• Find PoCs – for each LAS area, this part of the code identifies which LEs should be 
designated as points of confluence (PoCs); and for all the other LEs, the parent PoC to which 
they should join. 

• RunTSP – this code forms the PoC rings within each LAS area. 

These programs are described in detail in sections 3.2 and 3.3 respectively. 

3.2 Find PoCs 

Backhaul from the LE nodes (AT1 nodes in NGN) are aggregated at PoCs prior to being 
backhauled to the parent LAS (regional node in NGN). 

The following conditions govern whether an LE/AT1 may be designated as a PoC: 

• If the demand at the LE/AT1 node is greater than a defined threshold limit, then that LE/AT1 
node is designated as a PoC. 

• For the other nodes, if the demand of a clustered group of LE/AT1 nodes is greater than a 
defined threshold limit, then the LE/AT1 node at the line-weighted centre of the cluster is 
designated as the PoC. 

Having determined the appropriate PoC locations, the algorithm calculates the trench and fibre 
distance to join the LE/AT1 nodes to the appropriate PoC – the clustering process identifies the 
parent PoC to each LE/AT1 node. For each LE, this code requires the following data inputs (sorted 
by ‘Parent LAS’ then ‘Distance to parent LAS’): 
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Input required Description 

LE ID An identifier for the local exchange 

Parent LAS An identifier for the LAS area 

Distance to parent LAS The straight-line distance from the LE to its corresponding LAS 

SIOs at LE The number of services in operation at the LE 

Latitude Latitude coordinate of the LE/AT1 node 

Longitude Longitude coordinate of the LE/AT1 node 

Table 3.1:  Data inputs required by the ‘Find PoCs’ algorithm [Source: Analysys]  

In addition, the algorithm requires the following parameters to be defined: 

Parameter Description 

LEs.Per.POC The maximum number of LEs that may be attached to a PoC 

SIOs.For.POC The SIO threshold of a PoC – above which an LE is automatically assigned to be 
a PoC by itself 

Trench.Cost The cost per metre of digging a trench 

Fibre.Cost The cost per metre of deploying the fibre 

Table 3.2:  Parameters required by the ‘Find PoCs’ algorithm [Source: Analysys]  

Using these inputs, the ‘Find POCs’ algorithm runs through the following subroutines: 

• ClusterToPoCs 
• Setup_Output_Sheet 
• ReadInputParameters 
• ReadInALAS 
• Write_GPOC_dis_to_PoC 
• Calc_Distance_Matrix 
• RunThisLAS 
• Identify_PoCs 
• Cal_weighted_centre 
• Prepare_and_run_spanning_tree 
• WriteOutresults. 

These subroutines are described in detail in the following subsections. 

3.2.1 ClusterToPOCs 

Location: Found in the ClusterToPOCs module 

Purpose: This is the entry point and skeletal part of the ‘Find POCs’ code. It 
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calls the following routines: 

• Setup_Output_Sheet – prepares the output sheet 

• ReadInputParameters – reads in the input parameters 
(LEs.Per.POC and SIOs.For.POC) 

Then it loops through each LAS calling the following routines: 

• ReadINALAS – reads in the input data for the LAS 

• write_GPOC__dist_to_PoC – for LEs that are PoCs by 
themselves (henceforth referred to as GPoCs), we can write out 
the distance to the PoC as 0 

• Calc_Distance_Matrix – calculates the distances between every 
pair of LEs within the LAS area 

• RunThisLAS – the main clustering algorithm within the code. 
Clusters the LEs into PoC areas 

• Identify_POCs – for each PoC area, identifies the LE nearest the 
centre of the cluster to use as the PoC 

• prepare_and_run_spanning_tree – produces the minimum 
spanning tree for each PoC cluster. That is, identify what 
trenches need to be dug in order to attach each LE to its PoC 

• WriteOutResults – writes out the results of the clustering and 
spanning tree 

3.2.2 Setup_Output_Sheet 

Location: Found in the ClusterToPOCs module 

Purpose: This subroutine clears all the cells in the output range 

3.2.3 ReadInputParameters 

Location: Found in the ClusterToPOCs module 

Purpose: This subroutine reads in the input parameters LEs.Per.POC and 
SIOs.For.POC 
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3.2.4 ReadInALAS  

Location: Found in the ClusterToPOCs module 

Purpose: This subroutine runs through the data ranges and continues while 
the Parent LAS string is the same as the previous line. The first line 
it comes across is the LAS (assuming the data is sorted by distance 
to LAS). Then, if it is an LAS or if the SIOs.For.POC condition is 
met, it makes the LE into a GPoC (a PoC by itself with no other LEs 
in the PoC area). If this is the case, then we assign all the input data 
to an objGPOCData object. If it is not the case, then we assign the 
input data to an objInputData object. 

3.2.5 write_GPOC__dist_to_PoC  

Location: Found in the Spanning Tree module 

Purpose: For each of the GPoCs identified in the ReadInALAS subroutine, 
this subroutine writes out the distance from the LE to the PoC to be 
0 (since the LE is the PoC in these cases). 

3.2.6 Calc_Distance_Matrix 

Location: Found in the ClusterToPOCs module 

Purpose: Calculates the straight-line distances between every pair of LEs 
within the LAS area. The calculation takes account of the Earth’s 
curvature. 

3.2.7 RunThisLAS 

Location: Found in the ClusterToPOCs module 

Purpose: This subroutine sets up the global variable glNumPoints, which 
represents the number of points that need clustering. It then calls 
Divisive_clustering, which performs the clustering of LEs into 
PoCs. For a description of the algorithm, see DivisiveClustering and 
all of its associated routines in section 2.3.1. 
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3.2.8 Identify_POCs 

Location: Found in the Clustering module 

Purpose: For each cluster that has been identified (for reference, there are 
gNumChildClusters identified), this subroutine calls the function 
cal_weighted_centre, which calculates the centre of the cluster. The 
subroutine then loops through each LE in the cluster and identifies 
the LE that is nearest the centre. That identified LE is designated as 
the PoC. The algorithm then assigns the global variable 
glPOCPoints(lCluster) to point to that LE. 

3.2.9 cal_weighted_centre  

Location: Found in the Clustering module 

Purpose: This subroutine calculates the weighted centre of a cluster of points. 
In the algorithm, all of the points are weighted equally (the variable 
dCap). 

3.2.10 prepare_and_run_spanning_tree 

Location: Found in the SpanningTree module 

Purpose: For each PoC cluster of LEs, this subroutine sets up the data into the 
format required to run the minimum spanning tree algorithm. It then 
calls the algorithm construct_tree, which constructs the minimum 
spanning tree for that PoC cluster. That is, it identifies the trenches 
that need to be dug to join each LE to its PoC. For a description of 
the algorithm see the ConstructTree algorithm in section 2.3.2. In 
summary, the spanning tree algorithm uses the trench costs and fibre 
costs to identify the cheapest way of joining the LEs to the PoC. 

3.2.11 WriteOutResults 

Location: Found in the ClusterToPOCs module 

Purpose: This has two data types as arguments: (i) objGPOCData, which is 
the data for the LEs that are PoCs by themselves (i.e. are either an 
LAS or have so many SIOs to justify being a PoC – these have no 
other LEs in the PoC area) and (ii) objInputData, which is the data 
for the other LEs within the LAS. 
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3.2.12 Outputs of the Find PoCs algorithm 

For each LE, the WriteOutResults subroutine writes out the following named ranges results of the 
algorithm to the ‘Input Table’ worksheet: 

Named range Column title (on the ‘Input Table’ 
worksheet) 

Description 

Is.LAS Is a LAS? Whether the LE is also the LAS (a 
“Y” means yes, otherwise the 
column is left blank) 

PoC.ID PoC ID a number indicating an identifier 
for the PoC that the LE is 
associated with 

PoC.Name PoC Name the name of the LE that is also the 
corresponding PoC 

Dist Distance to PoC the crow flies distance from the LE 
to the PoC 

Next.LE Next LE in the spanning tree the next LE which this LE will pass 
through to reach its PoC 

LE.Dist Trench Distance to Next LE the crow flies distance to the next 
LE or PoC if connected directly 

Fibre.Dist Fibre Distance to POC the distance to the PoC 
considering intermediate LEs 

Table 3.3: Outputs of the ‘Find PoC’ algorithm written to the ‘Input Table’ worksheet [Source: 

Analysys] 

For each PoC, the WriteOutResults subroutine writes out the following named ranges results to the 
‘Input POCs’: 

Named range Column title (on the ‘Input PoCs’ 
worksheet) 

Description 

Cluster.Centre.Lat ClusterCentre Latitude The latitude of the centre of the LE 
cluster in the PoC area 

Cluster.Centre.Long ClusterCentre Longitude The longitude of the centre of the 
LE cluster in the PoC area 

Number.LEs.In.POC Number of LE's in the POC The number of LEs that are in the 
PoC cluster, determined by the 
subroutine num_points_in_cluster 
in the Clustering module 

Table 3.4: Outputs of the ‘Find PoC’ algorithm written to the ‘Input POCs’ worksheet [Source: 

Analysys] 
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For each PoC, the subroutine also writes out the following named ranges results (found on the 
‘Input POCs’ worksheet), which form the basis of inputs into the second part of the code, the 
RunTSP algorithm: 

Named range Column title (on the ‘Input 
PoCs’ worksheet) 

Description 

Input.TSP.POC.ID POC Id An identifier for the PoC to which the LE is 
associated 

Input.TSP.POC.Name LE Id The name of the PoC (which is an LE name) 

Input.TSP.Lat POC Latitude The latitude coordinate for the PoC 

Input.TSP.Long POC Longitude The longitude coordinate for the PoC 

Input.TSP.LAS LAS The parent LAS ID to the PoC 

Number.Of.POCs Number of POCs in LAS The number of PoCs in the LAS area 

Input.TSP.Is.a.LAS Is a LAS?  Flag as to whether the PoC is also the LAS (a “Y” 
means yes, otherwise the column is left blank) 

Input.TSP.Num.SIOs SIOs The aggregate number of SIOs in the PoC area 
(summed over all LEs in the PoC area) 

Table 3.5:  Outputs of the Find PoCs algorithm that feed into the RunTSP algorithm [Source: 

Analysys] 

3.3 RunTSP 

The ‘travelling salesman problem’ (TSP) is a well-recognised problem in optimisation. 

In its traditional form, the TSP considers the situation of a salesman who needs to find the least-
cost round-trip route between a number of cities – the route must visit each city exactly once, and 
must end at the same city at which the route started. 

It is employed in the Analysys cost model to determine the most efficient ring backhaul topology 
between a group of PoCs. 

However, the TSP algorithm has been extended beyond its traditional solution in order to enable 
backhaul solutions to consider more than one ring. Either several separate rings can form, each 
including the LAS as a node, or ‘parent’ rings (connecting to the LAS) can link ‘child’ rings back 
to the LAS. Consequently, the additional problem of identifying which PoCs should belong to 
which ring is incurred. 

The RunTSP algorithm uses the following sequence: 

• For each LAS area, the algorithm identifies to which ring cluster each PoC belongs.  
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• For those LAS areas where the number of PoCs is sufficiently small (up to 
Num.POCs.GA.Threshold – see below), the algorithm performs an exhaustive search 
considering every possible way in which the PoCs could be partitioned into ring clusters.  

• Where the number of PoCs is greater than this threshold number, the algorithm uses a genetic 
algorithm approach instead – an exhaustive search would be prohibitive in terms of processing 
time. 

– This genetic algorithm sets up an initial random “population”, each member of 
which represents a different partitioning of the PoCs into ring clusters. That 
population is then evolved – at each generation in the evolution and for each new 
member in that generation, two members of the old population are selected with a 
preferential bias towards those with the cheapest ring costs. These are thencrossed 
(so the new member has some of the properties of one parent and the rest from the 
other) and mutated to obtain some new properties. More details can be found in the 
relevant sections below. 

• Whichever method is used to select the partitioning, the same ‘travelling salesman’ algorithm 
is then used within each ring cluster to identify the order in which those PoCs should be 
joined.  

– An exhaustive Branch and Bound implementation that builds up the test ring 
along a search path, adding one PoC at a time, is used. If that ring exceeds the 
current best upper cost bound, then that search path is rejected. The algorithm 
proceeds along a new search path until either all search paths have been 
exhaustively searched, or until a full-sized ring that is cheaper than the current best 
cost bound is found. In the latter case, the best cost bound is set to be the newly 
found cost; and the algorithm continues to proceed along the next search path. 
Using this methodology, the algorithm exhaustively searches all of the possible 
paths until it has found the optimal solution. More details can be found in the 
relevant sections below. 

The RunTSP code takes the outputs, as defined in Table 3.6, from the Find POCs algorithm as 
input. In addition, it takes the following input parameters: 
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Parameter Description 

Max.POCs.Per.Ring The maximum number of PoCs allowed on any ring. Thus, if the number of 
PoCs in any LAS area is greater than this threshold, we would need more than 
one ring 

Bridging.Nodes The number of nodes which bridge a child ring to a parent ring. Valid inputs are 
1 or 2. 

Num.POCs.GA.Threshold The maximum number of PoCs in an LAS area in which the algorithm would 
calculate the optimal ring using an exhaustive search mechanism. If the number 
of PoCs is above this threshold then a genetic algorithm is employed to find an 
efficient ring1. Note that if the number of PoCs is less than or equal to 
Max.POCs.Per.Ring then there is only one ring required – all the PoCs can fit on 
it. Thus only the travelling salesman part of the algorithm to identify the order in 
which these PoCs are joined needs to be implemented 

GA.Num.Generations The number of generations to run when using a genetic algorithm to identify 
efficient rings. The more generations, the more likely one is to find a more 
efficient ring. However, the more generations, the longer the algorithm will take 
to process 

Table 3.6: Parameters required by the RunTSP algorithm [Source: Analysys] 

The RunTSP algorithm runs through the following routines starting at RunTSP: 

3.3.1 RunTSP 

Location: Found in the RunTSP module 

Purpose: This is the entry point and skeletal part of the RunTSP algorithm. It 
calls the following routines: 

• ClearOutputSheet – clears the output sheet ready to receive the 
new results 

• SetupInputParams–reads in the input parameters 

• InitOutput – sets up the first row to start the output from 

Then it loops through for each LAS area calling the following 
routines: 

• ClearTSPInputData – gets called for the objTSPInputData 
object, clearing out the values. The object will contain the input 
data 

                                                      
1  Whilst this method cannot guarantee an optimal solution, as it is not an exhaustive approach, it does employ optimisation algorithms 

to check that a near-optimal (which may in fact be optimal) solution is generated. 
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• ReadLASInputs – reads in the input data for the LAS, setting up 
the objTSPInputData object, which contains the input data 

• RunThroughCombinations – runs through either (i) an 
exhaustive search of all possible combinations of rings that 
could be used in order to find the optimal ring; or (ii) sets of the 
genetic algorithm to find the best ring that can find. It also 
writes out the results. 

3.3.2 ClearOutputSheet 

Location: Found in the RunTSP module 

Purpose: This subroutine clears the contents of all the named output ranges. 

3.3.3 SetupInputParams 

Location: Found in the RunTSP module 

Purpose: This subroutine reads in the four input parameters 
Max.POCs.Per.Ring, Bridging.Nodes, Num.POCs.GA.Threshold, 
GA.Num.Generations. 

3.3.4 InitOutput 

Location: Found in the OutputTSPResults module 

Purpose: This subroutine sets the first row of the output ranges to write to. 

3.3.5 ClearTSPInputData 

Location: Found in the RunTSP module 

Purpose: This subroutine initialises the passed-in object, generally setting the 
object’s values to zero. The passed-in object will be a 
clsTSPInputData type, which will eventually contain the input data 
required to run the TSP algorithm. 

3.3.6 ReadLASInputs 

Location: Found in the RunTSP module 
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Purpose: This subroutine reads in all the data for an LAS area. It loops 
through each and adds the PoC data to the objTSPInputData object. 
Once it finishes looping, the object is then ready to be passed into 
the processing stage of the algorithm. 

3.3.7 RunThroughCombinations 

Location: Found in the RunTSP module 

Purpose: This is called with the objTSPInputData object passed in as an 
argument. First it finds the maximum number of ring clusters that 
we will consider using by calling getMaxRings 

It tests the number of PoCs in the LAS area against 
glMaxPOCsForExhaustiveSearch, which is the global variable 
representing Num.POCs.GA.Threshold.  

If it is less then it: 

• First assigns all PoCs to Ring 1, then calls UseThisCombination 
and then calls RecurseCombinations to find the optimal solution 

Otherwise it:  

• Calls RunGeneticAlgorithm to find a near-optimal solution  

In either cases, when it returns from these calls it calls 
RunForBestRings, which runs through the travelling salesman part 
of the algorithm again but this time writing out the results. 

3.3.8 GetMaxRings  

Location: Found in the RunTSP module 

Purpose: This subroutine determines the number of rings required for a given 
number of PoCs and given value of glMaxPOCsPerRing (which 
takes the value of the named range Max.POCs.Per.Ring) 

3.3.9 UseThisCombination 

Location: Found in the RunTSP module 

Purpose: This subroutine takes the array lRings () as an argument, which 
identifies which ring each PoC is assigned to in the current test ring. 
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It calls TestRingValidityBeforeSetup to determine the number of 
rings required and to test whether the rings are valid (i.e. there 
aren’t more than the maximum allowed number of PoCs on any ring 
or less than the minimum number). If this returns False then a 
solution for this combination is not followed. If this returns True, 
then the algorithm creates an objTSPData object to hold the TSP 
data and calls ClearTSPData to initialise its values. It then uses 
lRings () along with the input data in objTSPInputData to set up 
objTSPData by calling bolSetUpTSPData.  

Having created the objTSPdata object, the subroutine then calls 
TestRingValidityAfterSetup to test whether the rings are valid and, if 
this returns True, then it then calls RunTheAlgorithm with the first 
argument as False so that no results are written out. 
RunTheAlgorithm identifies the best order to join up the PoCs given 
the ring association for each PoC. It stores these results in the object 
array objBestRings() and that includes the distance cost associated 
with the setup. If the total distance cost is the best found so far for 
this LAS area then the results are copied into the global object array 
glBestRings(). Finally, the algorithm calls ClearBestRings to clear 
out the memory used in creating objBestRings() 

3.3.10 TestRingValidityBeforeSetup 

Location: Found in the RunTSP module 

Purpose: Firstly, this subroutine determines the number of rings (i.e. clusters) 
needed for the array argument lRings() passed through, which says 
which ring each PoC is assigned to in the current test ring. It then 
determines which of these clusters contains the LAS node. 

The subroutine then performs the tests. The ring validity test will 
fail if one of the following is true: 

• The number of PoCs in any cluster is larger than 
glMaxPOCsPerRing (which represents Max.POCs.Per.Ring) 

• If any cluster that does not contain the LAS and has the number 
of PoCs in the cluster equal to glMaxPOCsPerRing. This is 
because the cluster will have to be attached to the ring that 
contains the LAS and thus the number of PoCs would then 
exceed glMaxPOCsPerRing 

• If the total number of PoCs across all clusters is larger than 
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MinPOCsPerRing, but the number of PoCs in any one cluster is 
less than MinPOCsPerRing (or less than that number minus 1 if 
the cluster does not contain the LAS). Note MinPOCsPerRing 
is defined as 3. This condition means that we will never have a 
cluster smaller than this size if we could join them into bigger 
clusters 

3.3.11 TestRingValidityAfterSetup 

Location: Found in the RunTSP module 

Purpose: This subroutine tests the validity of each ring (i.e. cluster) in the 
solution. A candidate ring fails if any of the following are true: 

• The number of PoCs in any cluster is larger than 
glMaxPOCsPerRing (which represents Max.POCs.Per.Ring) 

• If the total number of PoCs across all clusters is larger than 
MinPOCsPerRing, but the number of PoCs in any one cluster is 
less than MinPOCsPerRing (or less than that number minus 1 if 
the cluster does not contain the LAS). 

3.3.12 ClearTSPData 

Location: Found in the RunTSP module 

Purpose: This clears out and initialises the objTSPData object ready to be 
populated 

3.3.13 SetUpTSPData 

Location: Found in the RunTSP module 

Purpose: This takes lRings () as an argument, which says which ring each 
PoC is assigned to in the current test ring. It calculates the number 
of clusters (i.e. rings) required by the lRings() array. Then copies the 
longitude and latitude from objTSPInputData. It determines which 
cluster has the LAS and also the number of PoCs in each cluster 
(i.e. ring). Finally, it calls bolJoinClusterRings, which joins all the 
other rings up to the ring that contains the LAS 
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3.3.14 bolJoinClusterRings 

Location: Found in the RunTSP module 

Purpose: This loops through each cluster (i.e. ring), lCluster, and determines 
whether it contains the LAS. If it does, then there is nothing more to 
do with this cluster here. Otherwise, it looks through all the PoCs in 
all the clusters that do contain the LAS and determines the PoC that 
is nearest to any of the PoCs in lCluster. It then adds this nearest 
PoC to the list of PoCs in lCluster and sets this PoC to be the 
bridging PoC (the one that joins the two rings). If it turns out that 
this bridging PoC is the LAS, then lCluster now contains the LAS. 
Thus it may have been better for a previous cluster to have joined to 
this lCluster rather than what it has joined to. Hence, we clear out 
the bridging PoCs of the previous clusters and start 
bolJoinClusterRings again knowing that lCluster is now a cluster 
containing the LAS and has been joined 

3.3.15 RunTheAlgorithm 

Location: Found in the RunTSP module 

Purpose: Creates a new worksheet and chart (by calling CreateSheet and 
CreateChart respectively) ready to output the results for that 
particular LAS. It then loops through each cluster (i.e. ring) 
performing the following tasks: 

• Calls SetUpInputs to set up the distances between pairs of PoCs 
and the order in which to consider the PoCs 

• Calls FindInitialBound, which uses a simple dynamic 
programming technique to get an initial upper bound for the 
best ring solution – meaning the best order in which to join the 
ring’s nodes (PoCs) 

• Calls InitBranchPoints which sets up the identifiers for test 
rings that form branch points in the Branch and Bound 
algorithm that is employed to solve the travelling salesman 
problem. See the section InitBranchPoints below for more 
details 

• Sets up memory for the 3 initial test rings of size 4. Note that a 
size-3 ring (one with 3 nodes) is unique in how it can be ordered 
since we assume that a link from A to B is the same as a link 
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from B to A. A ring of size 4 has 3 possible ways to join the 
nodes up. In general, a ring of size n has (n-1)!/2 possible 
combinations 

• Calls FindShortestRing, which runs through the Branch and 
Bound method for solving the travelling salesman problem 

• Copies the results of the best ring order into the 
objBestRings(lCluster) object, which represents the best ring 
order solution for that cluster (collection of PoCs) 

• If the bolOutputRings flag is set to True, calls OutputARing 
which outputs the results for the ring cluster. Note that this 
argument is passed into the function and is only passed in as 
True once we know the best way to partition the PoCs into ring 
clusters. That is, only once we know which ring cluster each 
PoC should belong to. For LAS areas with 8 or fewer PoCs then 
all PoCs belong to the same cluster, so we can be sure we have 
the best partition 

Finally, if bolOutputRings is set to True then we call 
OutputFinalResults which provides the summary over all the ring 
clusters in the LAS area 

3.3.16 CreateSheet 

Location: Found in the OutputTSPResults module 

Purpose: Creates a new worksheet with the given name (the LAS area). Or, if 
that worksheet already exists, then CreateSheet clears the sheet 

3.3.17 CreateChart 

Location: Found in the OutputTSPResults module 

Purpose: Creates a new chart in the new worksheet created above in 
CreateSheet. Or, if that chart already exists, then CreateChart clears 
the chart 

3.3.18 SetUpInputs 

Location: Found in the InitialiseTSP module 
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Purpose: This calls GetInitialDistances to calculate the distance costs 
between every pair of PoCs in the ring cluster. It then calls 
SetUpInitialRingAndReorderSites which re-orders the PoCs in 
memory in an attempt to improve the efficiency of the Branch and 
Bound algorithm. It also sets up the initial ring of 3 PoCs formed 
from the first 3 PoCs in the re-ordered list 

3.3.19 GetInitialDistances 

Location: Found in the InitialiseTSP module 

Purpose: Calculates the distance costs between every pair of PoCs in the ring 
cluster 

3.3.20 SetUpInitialRingAndReorderSites 

Location: Found in the InitialiseTSP module 

Purpose: This loops through to find the 3 PoCs that form the longest triangle. 
It sets these 3 PoCs as the initial ring in the algorithm as this makes 
for an efficient algorithm. It then calls ReorderSites to re-order the 
rest of the PoCs into an efficient order; followed by 
SetUpReorderedDistances to update the distance cost matrix to 
reflect the re-ordering of the PoCs 

3.3.21 ReorderSites 

Location: Found in the InitialiseTSP module 

Purpose: Re-orders the PoCs so that the first 3 form the largest triangle. The 
PoCs are then ordered in descending order in terms of distance to a 
PoC on that triangle 

3.3.22 SetUpReorderedDistances 

Location: Found in the InitialiseTSP module 

Purpose: Having re-ordered the PoCs, we need the distance matrix to reflect 
this re-ordering so that its elements refer to the correct PoCs 
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3.3.23 FindInitialBound 

Location: Found in the ShortestRing module 

Purpose: This uses a quick dynamic programming technique to find a good 
first solution to the travelling salesman problem. This solution is 
used to form an initial upper bound to the overall cost of the ring – 
we know any better solution must have a lower cost. The dynamic 
programming technique employed here takes the initial ring of 3 
PoCs as the size-3 “current ring”. It then takes the next PoC from 
the re-ordered list and considers where it should be added to the 
current ring. There are 3 possibilities – (i) between the 1st and 2nd 
PoC, (ii) between the 2nd and 3rd PoC, or (iii) between the 3rd and 1st 
PoC. It places the new (4th PoC) in the position that minimises the 
total ring cost of the size-4 ring to form the new size-4 current ring. 
It then takes each PoC in turn and considers every possible position 
with the current ring. Finally, once all PoCs have been added, we 
have the dynamic programming solution. Note that, in general, this 
will not be optimal since an early decision on where to place PoC 5, 
for instance, may mean higher additional costs when we add a later 
PoC (say PoC 7) than if PoC 5 had been placed elsewhere. 
Nevertheless, it will form a good solution and provides a useful 
upper bound to the costs 

It is used within the FindInitialBoundroutine in the following 
manner: 

• Forms the initial size-3 ring from the first 3 PoCs 

• Calls FindDPBest to find the best dynamic programming 
solution for the re-ordered PoCs 

We then trya few other dynamic programming solutions (calling 
FindDPBest each time) with different orderings of PoCs to see if we 
can improve on the initial bound 

3.3.24 FindDPBest 

Location: Found in the ShortestRing module 

Purpose: Finds the best result from the dynamic programming method of 
adding 1 PoC at a time using the PoC ordering passed in by the 
array bPermuteOrder(). Note that the result depends on the order of 
the PoCs and so is unlikely to be optimal. Having formed the initial 
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size-3 ring (passed into this routine), loops through the rest of the 
PoCs in the bPermuteOrder order and at each stage: 

• Loops through all possible positions where the new PoC could 
be added, initially between PoCs 1 and 2. At each loop: 

o Calculates the distance cost “saved” – i.e. initially 
the distance between PoC1 and PoC2 since there is 
no longer a direct join between these 2 PoCs if we 
are adding the new PoC in between 

o Adds on the two parts to the extra distance costs – 
so initially these parts are (i) the extra distance cost 
between PoC1 and the new PoC and (ii) the extra 
distance cost between PoC2 and the new PoC 

• Inserts the new PoC in the position where the extra distance cost 
added less the distance cost saved is the smallest (i.e. the 
smallest net addition to the distance cost) and proceeds to the 
next PoC in the bPermuteOrder order 

Once we have processed all the PoCs, we have the solution using 
the dynamic programming method and we set the best ring so far to 
be this ring order and set the initial upper bound to be the associated 
distance cost 

3.3.25 InitBranchPoints 

Location: Found in the ShortestRing module 

Purpose: This sets out the branch points in the search tree. The way the 
Branch and Bound algorithm works is to build up the full-size ring 
from an initial size-3 ring adding a PoC at each stage. Potentially, it 
will consider every possible combination of ways to order the full-
size ring. However, there is an inequality we can use that means we 
do not need to search through every possible combination. The 
inequality is that any size-(n+1) ring will always have at least as 
much total distance cost as a size-n ring provided we keep the n 
PoCs in the same order in the ring. That is, adding a new PoC 
anywhere between two existing PoCs in the ring cannot reduce the 
distance cost. This is the same as saying the net addition to the 
distance cost in the FindDPBest routine cannot be negative 

Using this inequality, once we have identified a size-n ring that 
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exceeds the bound (the cost of the best full solution found so far), 
there is no point in proceeding along that branch because we can 
only add extra costs to it by adding on the rest of the PoCs. We 
cannot reduce the costs. Thus we should give up on that branch and 
proceed to the next branch point. See the FindShortestRing sub-
section for more details on the algorithm 

The InitBranchPoints sets out those branch points. Specifically, we 
have an enumeration of the rings being considered and 
InitBranchPoints stores the enumeration of the branch points in the 
global array giBranchPoints() 

  

The search tree can be seen in the following diagram: 

 ----1-----4----8----13.....etc
            ----9 
            ---10 
            ---11 
            ---12 
      -----5----8 
            ----9 
            ---10 
            ---11 
            ---12 
      -----6...etc 
      -----7 
 ----2-----4 
      -----5 
      -----6 
      -----7 
 ----3-----4 
      -----5 
      -----6 
      -----7  

Table 3.7: Example 

search tree for Branch 

and Bound method 

[Source: Analysys] 

 

The numbers in the diagram represent the enumeration of the rings. The rings in the first column 
represent the unique combinations for 4 POCs, the second column for 5 POCs, the third column 
for 6 POCs and so on. The top row describes rings being developed starting with one of the three 
possible combinations of 4 POCs, Ring 1. Reading across the top row: 

• Ring 4 is formed by adding a single PoC to Ring 1 between Ring 1’s first and second nodes. 
• Ring 8 is formed by adding a single PoC to Ring 4 between its first and second nodes 
• Ring 13 is formed by adding a single POC to Ring 8 between its first and second node etc. 
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If Ring 8 exceeds the cost bound, then all subsequent rings developed from it will also exceed the 
cost bound. Therefore, there is no need to consider any more of the rings developed along that 
specific search path. The top row are said to be the branch points since they are the first rings 
considered at each size. 

Columns in the diagram describe all combinations of a fixed number of POCs into unique rings. 
For example, reading down the third column from the top of the diagram: 

• ring 9 represents adding a single PoC to Ring 4 between its second and third nodes 
• ring 10 represents adding a PoC to Ring 4 between the third and fourth nodes 
• ring 11 represents adding a PoC to Ring 4 between the fourth and fifth nodes 
• ring 12 represents adding a PoC to Ring 4 between the fifth and first nodes. 

Having generated Rings 8–12 from Ring 4 and considered all the necessary full-size rings that can 
be formed from them, we can re-use the memory assigned to these rings. Thus, five new rings 
numbered 8–12 are constructed from Ring 5, which will be different to the previous rings labelled 
8 through 12. This principle of reuse is used throughout the algorithm and requires significantly 
less memory. For example, if only rings containing up to six POCs are required, then memory for 
only 12 rings is required at any one time. 

3.3.26 FindShortestRing 

Location: Found in the ShortestRing module 

Purpose: This runs through the Branch and Bound algorithm for solving the 
travelling salesman problem: 

• We start off with a given PoC order and add the PoCs one at a 
time in this order. So the initial ring of size 3 is made up of 
PoCs 1, 2 and 3. Rings of size 4 are made up of PoCs 1, 2, 3 and 
4 but may be in any of three orders – 4, 1, 2, 3 (Ring 1); or 1, 4, 
2, 3 (Ring 2); or 1, 2, 4, 3 (Ring 3). Note the labelling of the 
rings Ring1, Ring2 and Ring3. This number forms the array 
argument inside the objTestRings() object. 

• Note cyclic and mirror symmetry means that these 3 rings cover 
all possible rings of size 4 made up of the first 4 PoCs. 

• We form a tree of Rings 1, 2 and 3 investigating all three 
possible rings of size 4. We then go back a BranchPoint, so 
back to Ring 1 in order to consider a search path from Ring 1. 

• From Ring 1, we form a new subtree of Rings 4, 5, 6, 7 from 
that BranchPoint (Ring 1 is a branch point) investigating all 
four possible rings of size 5 (from the given 4-ring – Ring 1; 
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and given PoC order), then go back a BranchPoint (so back to 
Ring 4). 

• We then form a new subtree of Rings 8, 9, 10, 11, 12 from that 
BranchPoint for all five possible rings of size 6 (from the given 
5-ring – Ring 4; and given PoC order) then go back a 
BranchPoint (so back to Ring 8), etc. 

• Suppose we only need to go up to rings of size 7 (assuming 
there are only 7 PoCs in this cluster), then we need only go up 
to Ring 18 in this list and thus only store 18 rings at any one 
time. 

• Once we have processed the full-sized size-7 rings, Rings 13, 
14, 15, 16, 17, 18 (formed from Ring 8), we then go back to 
Ring 9 and form a new set of Rings 13, 14, 15, 16, 17, 18 
starting from Ring 9 as opposed to Ring 8. 

• We then do the same but starting from Ring 10, and again 
starting from Ring 11 and once more starting from Ring 12. 

• Then we go back to Ring 5 (as opposed to Ring 4) and form a 
new set of Rings 8, 9, 10, 11, 12 from which to go from to form 
the new sets of Rings 13, 14, 15, 16, 17, 18. 

• Then go from Ring 6 and Ring 7. 

• Then go back to Ring 2. 

• Then finally go from Ring 3. 

Note that if any ring exceeds the current best cost bound then there 
is no point considering any further rings along that branch as they 
will also exceed the best cost bound. Contrariwise, any full-size 
rings that have lower distance cost than the current best cost bound 
are stored and the best cost bound set to that ring’s distance cost. 

The algorithm is employed in the code in the following manner: 

• Copies the initial size-3 ring into the objTestRings() array for 
Rings 1, 2 and 3. Then for each of these in turn, call AddBranch 
to add on the 4th PoC in the appropriate position for that ring. 

• If there are only 4 PoCs then finds which of those 3 rings above 
is the best. 

• Otherwise, calls the routine RecurseThroughTree to recurse 
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through the search tree in accordance with the algorithm above. 

 

3.3.27 AddBranch 

Location: Found in the ShortestRing module 

Purpose: Takes an existing ring, and adds on the next PoC to it in the stated 
position. Updates the distance cost and kills off the branch (by 
setting the objRing’s bolActive flag to False) if the distance cost 
exceeds the current best cost bound. On the other hand, if the ring is 
now full-size and its cost is lower then the current best cost bound, 
it stores the ring in objBestRing and updates the current best cost 
bound to be the cost of the ring 

3.3.28 RecurseThroughTree 

Location: Found in the ShortestRing module 

Purpose: This is the core of the Branch and Bound algorithm. It employs a 
recursion technique to search through all possible ring combinations 
that have the potential to be better than the current best ring 
solution. RecurseThroughTree looks to see whether the branch from 
the current ring is active and if so, it copies the current ring into 
each of a new set of rings enumerated along the branch (see 
InitBranchPoints for more details). Then to each of these new rings, 
it calls AddBranch, which adds a PoC to the ring in the appropriate 
position. If this new ring survives (i.e. its cost is still less than the 
current best cost bound), it calls RecurseThroughTree to recurse 
from this new ring 

3.3.29 OutputARing 

Location: Found in the OutputTSPResults module 

Purpose: This calculates the capacity requirements of the ring. The capacity 
requirement is the sum of the capacity at each PoC on the ring 
except for the LAS PoC, plus the capacity at any PoC on any other 
rings that are joined to this ring to get to the LAS. 

It then updates the sheet, created in RunTheAlgorithm that is named 
after the current LAS, with the results of the best ring found for that 
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cluster. Furthermore, it updates the chart (by adding the data and 
calling FormatChartSeries) on that sheet to display these results. 
Finally, it add the results to the output table in the ‘Output PoCs’ 
worksheet 

3.3.30 OutputFinalResults 

Location: Found in the OutputTSPResults module 

Purpose: This updates the sheet, created in RunTheAlgorithm that is named 
after the current LAS, with an overall summary for all the ring 
clusters in that LAS area. For example, outputting the total distance 
cost of all the best rings 

3.3.31 FormatChartSeries 

Location: Found in the OutputTSPResults module 

Purpose: Sets the line size and format of the output chart series. If we’re 
adding the first series, then also calls FormatTheChart to format the 
whole chart 

3.3.32 FormatTheChart 

Location: Found in the OutputTSPResults module 

Purpose: Formats the output chart. For example, removing gridlines and the 
legend 

3.3.33 ClearBestRings 

Location: Found in the RunTSP module 

Purpose: Clears out the memory of the objBestRings() object ready to be used 
for another combination of partitioning the PoCs into ring clusters 

3.3.34 RecurseCombinations 

Location: Found in the RunTSP module 

Purpose: This creates the partitioning of the PoCs into rings, forming the 
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array lRings() which stores this partitioning. It proceeds in the 
following manner: 

• Loops lPOCToChange through from the last PoC back to the 
passed-in argument lLastPOCToChange 

• At each stage in that loop, loops lRingForPOCToChange from 
2 up to the maximum number of rings (obtained earlier in 
RunThroughCombinations) 

• Within this inner loop: 

o Sets the lLastPOCToChange PoC to be 
lRingForPOCToChange – the cluster ring that it 
has been incremented to be in. 

o Sets all later PoCs to be in ring cluster 1 

o Calls UseThisCombination to test out this 
partitioning to see if it improves upon the best rings 
found so far 

o Calls RecurseCombinations with lPOCToChange + 
1 passed in as lLastPOCToChange 

For example, let us suppose there are 3 rings to assign 6 PoCs to. 
(Note this is unrealistic since 6 PoCs would fit on one ring, but it is 
useful for illustration.) We start off assigning them all to Ring 1 
(which we can represent by the series 111111) and call 
UseThisCombination on that. Then we increment the last PoC to 2. 
So the PoCs are assigned to rings according to the series 111112 
and again call UseThisCombination. We increment it again to get 
the series 111113 each time calling UseThisCombination. Then the 
last PoC is at the maximum number of rings, so we go to the next 
PoC back and set all later PoCs to 1. Thus we get to 111121. The 
series continues as follows: 

• 111122 
• 111123 
• 111131 
• 111132 
• 111133 
• 111211 
• 111212 
• 111213 
• 111221 
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• 111222 
• 111223 
• 111231 
• 111232 
• 111233 
• 111311 

etc. 

Eventually, all possible partitions are considered. Note that many of 
these partitions will not be valid – for example they may have too 
many PoCs in any one ring cluster. These will be rejected in the call 
to TestRingValidity inside UseThisCombination 

3.3.35 RunGeneticAlgorithm  

Location: Found in the GeneticAlgorithmForRings module 

Purpose: This is called from RunThroughCombinations when the number of 
PoCs in the LAS is more than glMaxPOCsForExhaustiveSearch. In 
these cases, an exhaustive search would be prohibitive upon 
processing time and a genetic algorithm is employed to find a near-
optimal solution  

This routine proceeds as follows: 

• Calls SeedPopulation to set up an initial “population” of test 
partitions of PoCs into ring clusters. Each member of the 
population represents a partitioning of the PoCs into ring 
clusters. 

• Calls TestPopulation to run through each of these partitions to 
find the best possible rings for each partition and records their 
results. If any of these results improve upon the best result 
found so far across all partitions tested in terms of least distance 
cost, then it records it 

Loops through “generations” from 1 up to glNumGenerations – the 
number for GA.Num.Generations. In each generation: 

• Calls SortThePopulation to order the population, putting the 
best partitions first and the worst ones last. The best partitions 
are those for whose best rings incur the least distance cost 

• Calls SeedPopulation to set up a few new test partitions – 
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although this time the seeded population is only part of the full 
population 

• Calls MergePopulation to produce “offspring” preferentially 
from the better partitions found in the previous generation 

• Calls MutatePopulation to make some small random 
adjustments to the population 

• Calls TestPopulation to run through each of the partitions in the 
new population, again finding the best possible rings for each 
partition, recording the results and updating the best solution 
where appropriate 

In each generation, there will be POPULATIONSIZE (=100) 
members in total, NEWRANDOMS (=10) of these will be newly 
seeded members and the rest will be from merging two parents 

Once we have run through GA.Num.Generations, we use the best 
partitioning found so far to output as the results. Note that this may 
or may not be the optimal solution but should always be a very good 
solution 

3.3.36 SeedPopulation 

Location: Found in the GeneticAlgorithmForRings module 

Purpose: Sets the population of PoC partitions for the genetic algorithm. Each 
member of the population represents a partitioning of the PoCs into 
ring clusters. These are seeded at random. Note that arguments 
passed in to this function determine which members of the 
population are seeded. The first time it is called, all members of the 
population are seeded. On later calls, only some members are 
seeded – others are formed by merging and mutating existing 
members of the population 

3.3.37 TestPopulation 

Location: Found in the GeneticAlgorithmForRings module 

Purpose: Runs through each member of the population and calls 
UseThisCombination on that combination. UseThisCombination 
tests whether the partition is valid (e.g. the number of PoCs in any 
ring cluster does not exceeded the maximum permitted), then 
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identifies the best order of PoCs in each ring represented by the 
partitioning and determines the associated distance cost 

3.3.38 SortThePopulation 

Location: Found in the GeneticAlgorithmForRings module 

Purpose: Orders the population according to which partition can have the 
cheapest set of rings formed for it. It calls the routine SortTheScores 
to perform this task on the temporary array lPopulationOrder(). It 
then updates the ring partitioning arrays lMemberRings() to reflect 
this re-ordering 

3.3.39 SortTheScores 

Location: Found in the Sort module 

Purpose: Uses the standard Quicksort method to order the scores (cheapest 
way of forming the rings given the partition). It calls the 
ScoresQuickSort routine to do this 

3.3.40 ScoresQuickSort 

Location: Found in the Sort module 

Purpose: Recursively sorts scores by swapping points from the lower half 
with points from the upper half of the population when a point in 
the lower half scores higher than the medium value and a point in 
the upper half scores lower than the medium value. It then recurses 
within each of these halves until all the points are sorted. It uses the 
routine SwapMembers, which just swaps two points 

3.3.41 SwapMembers 

Location: Found in the Sort module 

Purpose: Swaps two points within an array 
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3.3.42 MergePopulation 

Location: Found in the GeneticAlgorithmForRings module 

Purpose: This runs down through the new generation population members 
from POPULATIONSIZE - NEWRANDOMS to REPRODUCERS 
+ 1. At each stage in the loop, two random parent members from the 
top scoring REPRODUCERS number of the previous generation 
population are used to generate the partition for the new generation 
population member 

It then runs down the new generation population members from 
REPRODUCERS To 1 counted by lMember, only selecting parents 
from the top scoring lMember number of the previous generation 
population 

In this way, higher-scoring members are preferentially selected for 
being used to form members in the next generation 

It calls MergeTwoParents in order to produce the next generation 
member from the two current generation parents 

3.3.43 MergeTwoParents  

Location: Found in the GeneticAlgorithmForRings module 

Purpose: This takes two members from an existing population and produces 
one new member for the next generation. In the “parent” members, 
each PoC has been assigned to a ring cluster. In the new member, 
for each PoC, there is a 50-50 chance that it will take the first 
parent’s ring cluster assignment and otherwise will take that of the 
second parent 

3.3.44 MutatePopulation 

Location: Found in the GeneticAlgorithmForRings module 

Purpose: This adds some more random element into the process by adjusting 
a random number of PoC cluster ring assignments. For each 
member of the population, it will adjust a random number up to 
MAXPOPMUTATE of the PoCs. When it adjusts them, it sets the 
new cluster ring that the PoC is assigned to be to a random number 
up to the maximum number of cluster rings 
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3.3.45 RunForBestRings 

Location: Found in the RunTSP module 

Purpose: Whichever method is used from RunThroughCombinations, we end 
up calling RunForBestRings. At this stage, we have either found the 
optimal rings for the sets of PoC by using an exhaustive search 
mechanism through RecurseCombinations or we have found a very 
good and still possibly optimal solution through 
RunGeneticAlgorithm. We then call RunForBestRings to run 
through this best solution, but this time to output the results as we 
go. Hence this routine calls SetUpTSPData as before but using the 
best rings found already, then calls RunTheAlgorithm again but this 
time with the first argument set to True so it knows to output the 
results. Finally, it calls ClearBestRings to clear out the memory 
used by objBestRings() 

3.3.46 Outputs of the RunTSP algorithm 

The RunTSP algorithm produces the following outputs in the ‘Output PoCs’ worksheet: 
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Named range Column title (on the ‘Output 
PoCs’] worksheet) 

Description 

TSP.POC.ID POC Id An identifier for the PoC  

TSP.POC.Name POC Name The name of the PoC (which is an LE name) 

TSP.Lat POC Latitude The latitude coordinate for the PoC 

TSP.Long POC Longitude The longitude coordinate for the PoC 

TSP.LAS LAS The parent LAS ID to the PoC 

Ring Ring An identifier for the ring on which the PoC 
should be a member 

TSP.Num.POCs Number of POCs in LAS The number of PoCs in the LAS area 

TSP.Is.a.LAS Is a LAS? Flag as to whether the PoC is also the LAS (a 
“Y” means yes, otherwise the column is left 
blank) 

Bridge Bridging Node Flag as to whether the PoC is also on the 
Parent ring (connects to a LAS) (a “Y” means 
yes, otherwise the column is left blank). Note 
that such bridging nodes appear more than 
once in the outputs since they appear for each 
ring they are on. The “Y” will appear in the 
column for the entry representing the child 
ring.  

In addition, the node representing the LAS will 
appear as a bridging node on one (but only 
one) of the rings connecting to the LAS. 

SIOs SIOs The aggregate number of SIOs in the PoC 
area (summed over all LEs in the PoC area) 

TSP.Next.Node Next Node The next node (PoC) along the ring that this 
PoC gets joined to 

TSP.Dist.To.Next.Node Dist To Next Node The distance to the next PoC that the PoC is 
joined 

Ring.Joined Ring Joined To Where there are Child rings, the ring joined 
indicate the Parent ring of the Child ring 

In.Las.Ring Is In LAS Ring Flag as to whether the PoC is a Parent ring 
(contains the LAS) 

SDH.Transmission.Capa
city 

SDH Transmission Capacity The capacity that must be sustained at the 
PoC. If the ring it is on contains the LAS, then 
the “SDH.Transmission.Capacity” is 
calculated as the sum of the SIOs in the LAS 
area at all the PoCs, excluding the LAS. 
Otherwise it is just the sum of the SIOs in the 
PoC’s ring, excluding the bridging node 

SDH.Transmission.Capa
city.Formula 

SDH Transmission Capacity 
Formula 

The “SDH.Transmission.Capacity” output as a 
formula so that it is updated if the number of 
SIOs changes 

Table 3.8:  Table outputs of the RunTSP algorithm [Source: Analysys] 

In addition, for each LAS area, a new worksheet is generated. In each worksheet, there is: 
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Title Description 

Total number of POCs The number of PoCs in the LAS area  

Total number of Nodes The number of PoCs in the LAS area but double counting those 
that form bridging nodes (join two rings together) 

Total Cost of All Rings The distance cost associated with all the rings in the LAS area 

Time Taken The time taken to perform the calculation for this LAS area 

Table 3.9:  Worksheet summary outputs of the RunTSP algorithm [Source: Analysys] 

Then for each ring in each LAS area, the following outputs are provided: 

Title Description 

Ring The identifier for the ring 

Number of Sites The number of PoCs in the ring 

Cost of Ring The distance cost associated with the ring 

Optimal Node Order The order in which the PoCs should be joined in the ring 

Node An identifier for the Node 

Latitude The latitude of the PoC 

Longitude The longitude of the PoC 

Site Capacity This is set to 1 

Stored Node The re-ordered numbering of the Nodes used in the algorithm and 
can be ignored. It is useful for debugging the algorithm 

POC ID The identifier for the PoC that the Node corresponds to 

POC Name The name of the PoC 

LAS Marked next to the nodes that represent the LAS 

Table 3.10:  Worksheet ring outputs of the RunTSP algorithm [Source: Analysys] 

3.4 Other routines 

The longitude / latitude distance measure used throughout the algorithms for the core network are 
executed by the functions calc_dist_between_two_points and calc_dist_between_two_DblPoints. 
Both functions take the coordinates (LongA, LatA) and (LongB, LatB) of two points as inputs and 
return the spherical distance D between them by the formula: 
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where R is the radius of the Earth. 

Both of these functions can be found in the Clustering module for the core routine. 
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The following routines used in this code have almost identical equivalents described in section 2, 
as they also form part of the geoanalysis and access network module. The mapping of the two sets 
of subroutines is shown below in Table 3.11. 

Location Core routine Equivalent access routine 

Divisive_clustering DivisiveClustering 

AllocatePointToCluster AllocatePointToCluster 

simple_reassignment SimpleReassignment 

Swap Swap 

full_optimisation FullOptimisation 

initialise_cluster_allocations InitialiseClusterAllocations 

initialise_parent_capacity InitialiseParentCapacity 

cal_maxd_in_P CalSquareMaxDInP 

cal_unweighted_centre CalUnweightedCentre 

choose_first_child_member ChooseFirstChildMember 

cal_total_distance CalcTotalDist 

Clustering module 

write_cluster_results WriteClusterResults 

construct_tree ConstructTree 

identify_attached_and_unattached_points IdentifyAttachedAndUnattachedPoint
s 

test_add_unattached_point_to_attached_poin
t 

AverageCostPerLine 

add_to_edge_list AddToEdgeList 

add_cheapest_in_edge_list_to_objEdges AddCheapestEdgeInListToObjEdges 

StoreRoutes StoreRoutes 

GetTotalDistance GetTotalDistance 

setup_DistanceMatrix SetupGdDistanceMatrix 

SpanningTree 
module 

setup_points_in_cluster SetupPointsInCluster 

Table 3.11:  Other routines documented in the “Script for the access network algorithms” [Source: 

Analysys] 
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