

N >

Model documentation for the

Australian Competition and

Consumer Commission

Description of the Visual
Basic used in the fixed

LRIC model – Version 2.0

August 2009
9995‐203

Analysys Consulting Limited

St Giles Court, 24 Castle Street

Cambridge, CB3 0AJ, UK

Tel: +44 (0)1223 460600

Fax: +44 (0)1223 460866

consulting@analysys.com

www.analysys.com

9995-203

Contents

1 Introduction 1

2 Script for the access network algorithms 1
2.1 Introduction 1
2.2 Start-up phase 2
2.3 Urban deployment path 4
2.4 Rural deployment path 37

3 Script for the core network algorithms 65
3.1 Introduction 65
3.2 Find PoCs 65
3.3 RunTSP 71
3.4 Other routines 95

Description of the Visual Basic used in the fixed LRIC model – Version 2.0

9995-203

© Commonwealth of Australia 2009. This report has been produced by Analysys
Consulting Limited for the Australian Competition and Consumer Commission (ACCC).
You may download material in the report for your personal non-commercial use only. You
must not alter, reproduce, re-transmit, distribute, display or commercialise the material
without written permission from the Director ACCC Publishing.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 1

9995-203

1 Introduction

Visual Basic code has been developed, using the compiler in Excel, for certain calculations to
dimension both the access and core networks in the Analysys cost model.

For the access network, the Visual Basic is used to calculate the asset volumes required to deploy
an access network to serve all locations within the Exchange Service Area (ESA). The algorithm
considers a number of technologies to link locations back to the local exchange (LE) location in
the ESA, namely fibre, copper, wireless or satellite (which would link customers to an earth-
station in the core network). This code is stored in the workbook Access – CODE.xls.

For the core network, the Visual Basic purpose determines the efficient backhaul routes, using a
spur and ring topology, from the local exchanges (Les) to the local access switches (or their next
generation network (NGN) equivalents).

This document outlines the structure underlying both sections of code, each of which are
significant. In addition, the code itself has been annotated should users want to inspect it within the
Visual Basic Editor. A treatment of the specific principles underlying the algorithms can be found
within the main documentation for the Analysys cost model, entitled Fixed LRIC model
documentation.

The remainder of this document is laid out as follows:

• Section 2 describes the Visual Basic used for the access network deployment.

• Section 3 describes the Visual Basic used for the core network deployment.

9995-203

2 Script for the access network algorithms

2.1 Introduction

The Visual Basic for the access network determines an efficient access network deployment for an
ESA, given the location of the LE and a set of locations in the ESA with associated levels of
demand. The algorithms includes two basic forms of deployment methodologies:

• The urban deployment uses a combination of copper and fibre and assumes that locations are
grouped into clusters served by a distribution point (DP) which are themselves served by a
pillar. This is currently used in Bands 1 and 2 and the more densely populated geotypes of
Bands 3 and 4.

• The rural deployment uses a cost-based decision to determine whether it is more appropriate
to serve each location in the ESA by wireline or wireless solutions. Locations served by
wireline are served with either copper or fibre, whilst the remaining locations are served by
either a wireless BTS network or satellite.

This document outlines the structure of the underlying code, which is located in the workbook
Access – CODE.xls, which is part of the geoanalysis and access network module of the Analysys
cost model.

The code follows two main paths depending on whether an urban or rural deployment is required.
Both paths begin with a start-up phase, described in section 2.2, where constants and assumptions
are read into the code.

For an urban deployment, there are then eight phases, summarised below and described in more
detail in section 2.3:

• copper clustering phase
• copper DP cluster spanning tree phase
• copper DP cluster connection phase
• copper pillar connection phase
• fibre determination phase
• backhaul determination phase
• result storage phase
• assumption storage phase.

Rural deployments require more phases, since this type of deployment is considering more
technologies. The phases are summarised below and described in more detail in section 2.4:

• initial copper clustering phase
• copper or wireless determination phase

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 2

9995-203

• copper clustering phase
• copper pillar cluster spanning tree phase
• copper cluster connection phase
• backhaul determination
• fibre determination
• copper result storage
• wireless clustering
• satellite determination
• wireless backhaul determination
• copper and fibre result storage
• assumption storage.

2.2 Start-up phase

This stage is completed at the start of the calculation for any ESA. The following subroutines are
used. For each sampled ESA to be calculated, the relevant Access DATA workbook is opened if
needed, old assumptions are deleted and input arrays are populated.

Two subroutines are run at the start of the process, SetupPermanentConstants and
ReadInGeotypeData, which read in inputs relevant to all ESAs.

For each ESA to be processed by the algorithms, three subroutines are used to read in input data
specific to the ESA: SetupConstantsForThisESA, DeleteOldESAOutputs and Initialise.

All five of these subroutines are described in sections 2.2.1–2.2.5 below.

2.2.1 SetupPermanentConstants

Location: Found in the CommonCode module

Purpose: Reads in various assumptions and constants that are fixed regardless
of geotype. This includes:

• directory paths
• cable sizes
• array of network deployment assumptions

2.2.2 ReadInGeotypeData

Location: Found in the CommonCode module

Purpose: Reads in the ESA indices as stored on the ‘Summary’ worksheet i.e.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 3

9995-203

the ESA geotype, index and index within the sample of the geotype.

For each sampled ESA to be calculated, the relevant Access DATA workbook is opened if it is not
already open. Old assumptions from previous calculations are then deleted and input arrays are
populated. Throughout the process, the time taken at major stages in the process is stored.

2.2.3 SetupConstantsForThisESA

Location: Found in the CommonCode module

Purpose: This resets all of the global variables and reads in the assumptions
that vary by geotype on the ‘Inputs’ worksheet. These include the:

• clustering capacity and distance constraints
• p-function coefficients
• assumptions for the copper versus wireless algorithm
• proxy cost function coefficients
• number of locations and the identity of the one that is the remote

access unit (RAU) / local exchange(LE).

2.2.4 DeleteOldESAOutputs

Location: Found in the CommonCode module

Purpose: Deletes the contents of all of the cells which were written to in the
last calculation of this ESA

2.2.5 Initialise

Location: Found in the CommonCode module

Purpose: Reads in the location coordinates and demand requirements for the
relevant ESA from its worksheet in the Access DATA workbook: this
includes the Geocoded National Address file (G–NAF) locations for
rural ESAs.

In particular, the array gobjInputPoints() is populated with the co-
ordinates and demand at each location.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 4

9995-203

The path of the code then diverges, depending on whether the ESA is to be processed with the
urban or rural deployments. The code for urban deployments is described in section 2.3, whilst the
code for rural deployments is described in section 2.4.

2.3 Urban deployment path

There are eight phases to the urban deployment:

• copper clustering phase, which is described in section 2.3.1
• copper DP cluster spanning tree phase, which is described in section 2.3.2
• copper DP cluster connection phase, which is described in section 2.3.3
• copper pillar connection phase, which is described in section 2.3.4
• fibre determination phase, which is described in section 2.3.5
• backhaul determination, which is described in section 2.3.6
• result storage phase, which is described in section 2.3.7
• assumption storage phase, which is described in section 2.3.8.

2.3.1 Copper clustering phase

This is run through the subroutine AllClusteringMethods, which is found in the MainMacros
module. The urban deployment executes seven subroutines using AllClusteringMethods:

• IdentifyRAU
• DivisiveClustering
• WriteClusterResults
• ClusterToPillarClusterLevel
• CalculateFibreUnitsOfDemand
• IdentifyPillars
• IdentifyDistPoints.

These are explained in more detail in the following sub-sections.

IdentifyRAU

Location: Found in the Clustering module

Purpose: This only calculates a RAU location for an ESA if no RAU location
is stated in the ‘Inputs’ worksheet. Currently, each ESA uses the first
location in the list as the location of the RAU, which has been
extracted from ExchangeInfo.

If a location is not stated for the RAU in the Access DATA
workbooks, then the location closest to the demand-weighted centre

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 5

9995-203

of the locations in the ESA is used. There are three sets of objects that
can be used for this calculation by IdentifyRAU: locations, DPs and
pillars. The urban deployment uses individual locations.

DivisiveClustering

This subroutine groups final drop points (FDPs) into clusters which are served by DPs. This
clustering is based on a capacity and a distance constraint and is top-down in design. Specifically,
a single parent cluster is created containing all of the locations and ‘child’ clusters are created from
the parent, causing it to shrink in size. This ceases when the parent cluster satisfies both the
capacity and distance constraints.

The following subroutines create the parent cluster:

► InitialiseClusterAllocations

Location: Found in the Clustering module

Purpose: Assigns each point to a single ‘parent’ cluster

► InitialiseParentCapacity

Location: Found in the Clustering module

Purpose: Calculates the total demand within the parent cluster

► CalWeightedCentre

Location: Found in the Clustering module

Purpose: By default, this calculates the demand-weighted centre of the parent
cluster. If it is supplied with points that all have zero demand, then it
will calculate the geometric centre of all the points.

► CalSquareMaxDInP

Location: Found in the Clustering module

Purpose: This identify the point furthest from the centre of the parent cluster in
order to generate a child cluster. Having identified the point, it sets:

• the point as the first point in a new child cluster
• the demand of the child cluster as the demand at that point.

We note that we do allow points with demands greater than the limit
of the capacity to be clustered as clusters of one point, although this

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 6

9995-203

fails the capacity limit criterion.

The main loop of the algorithm creates new child clusters until the parent cluster satisfies the
demand and distance constraint. New child clusters are created by:

• Selecting the point in the parent cluster that is furthest from its demand-weighted centre, using
the subroutine ChooseFirstChildMember, which is found in the Clustering module.

• Expanding the cluster by adding points from the parent. Each time a point is added:
– all points in the parent cluster are shortlisted to those who are within twice the

maximum permitted distance from the current child cluster demand-weighted
centre and with a capacity that would not overfill the cluster capacity were it added

– points that are found during this process to have too much demand for the cluster
are not considered again for the cluster at all, but are kept within the parent cluster
and are restored for consideration for the next child cluster

– the point amongst these that is the closest to this child cluster demand-weighted
centre is selected and provisionally re-allocated

– the child cluster centre is re-calculated using CalUnweightedCentre, which is
found in the Clustering module and calculates a geometric centres for the cluster

– the re-allocation is finalised, unless the cluster no longer satisfies the distance
criterion with the re-calculated cluster centre, in which case it is rejected.

This loop uses the subroutine AllocatePointToCluster to move points between the parent and child
clusters.

► AllocatePointToCluster

Location: Found in the Clustering module

Purpose: Allocates a selected point to a given child cluster provided it doesn't
violate distance constraints. If the allocation is accepted, then the new
cluster centres of both the parent and the child are also re-calculated.

When the parent cluster satisfies the demand and distance constraint, it is re-written as the final
child cluster. A series of subroutines are then used to improve the quality of these clusters. These
subroutines are:

• SimpleReassignment
• Swap
• FullOptimisation
• HighDemandSimpleReassignment
• HighDemandSwap

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 7

9995-203

• SingleDemandSwap.

A dictionary of points is used to accelerate the refinement processes using a Scripting.Dictionary
object. This object is populated before the refinement begins.

These subroutines are reused frequently throughout the code for different clustering requirements
and are each explained below. They can move any locations between cluster except for the RAU
location when an ESA is using the fibre ring deployment. This very minor constraint allows the
subroutines to be reused for clustering pillars into fibre rings, which requires that every cluster
contains the RAU.

These subroutines require particularly intensive use of distance calculations, particularly for
distance comparisons (e.g. identifying whether a point P1 is closer to a point P2 or a point P3). We
use a quicker distance measure in each of these cases with the subroutine
CalcPfunctionDistanceComparisonOnly.

► CalcPfunctionDistanceComparisonOnly

Location: Found in the CommonCode module

Purpose: For two points with co-ordinates (x1, y1) and (x2, x2) and a p-function
with coefficients k and p, this subroutine outputs:

⏐x1-x2⏐ p +⏐y1-y2⏐p

This output does not include taking the pth root that would be
required in deriving the actual p–function distance and therefore
requires less time. Comparing two measures calculated with this form
will give the same result as comparing two actual p–function
distances, as functions of the form xp are increasing functions for
positive x.

In contrast, the subroutine CalcPfunctionDistance calculates the actual p–function distance
between two points, executing the final stage of taking the pth root.

► CalcPfunctionDistance

Location: Found in the CommonCode module

Purpose: For two points with co-ordinates (x1, y1) and (x2, x2) and a p-function
with coefficients k and p, this subroutine outputs:

k(⏐x1-x2⏐ p +⏐y1-y2⏐p)1/p

This function can also be used for the normal straight-line distance
measure, by using k=1 and p=2.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 8

9995-203

► SimpleReassignment

Location: Found in the Clustering module

Purpose: This subroutine will move a point from one cluster to another under
certain conditions.

To start with, the demand-weighted centres for each cluster is
calculated and clusters with spare capacity are flagged.

The main Do…Loop continues moving through reach point in turn
until no more can be re-assigned. This can move through all of the
points more than once. For each point:

• The cluster with the closest demand-weighted centre is identified.

• It is moved to this identified cluster if and only if:
– the point is closer to this new cluster’s demand-

weighted centre than its current one
– the new cluster has sufficient spare capacity
– all points in the new cluster obey the distance

constraint with respect to a cluster centre re-calculated
using this new point.

• Its old cluster is flagged to have spare capacity and the new
cluster is checked to see whether it no longer has spare capacity.

► Swap

Location: Found in the Clustering module

Purpose: This subroutine will swap a point in one cluster with a point in
another under certain conditions. To start with, the demand-weighted
centres for each cluster is calculated.

The main Do…Loop cycles through all points in turn, possibly
multiple times, until no more points can be swapped. For each point
P:

• The cluster with the closest demand-weighted centre is identified.

• If the identified cluster is not P’s current cluster and, if moving P
to the new cluster violates the maximum capacity constraints,
then try to find a point Q in the new cluster which can be
swapped with P so that all the following are satisfied:

– the two new clusters both satisfy the cluster capacity

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 9

9995-203

constraint
– the sum of the two distances between the points and

the cluster centres of their new clusters is lower than
the sum of the distances between the points and the
cluster centres of their original clusters

– both clusters obey the distance constraint with
respect to their new cluster demand-weighted centre.

• If such a Q is found, then:
– temporarily revise the two clusters
– re-calculate their demand-weighted centres
– re-calculate the sum of the two distances between the

points and the re-calculated cluster centres of their
new clusters

– check if this new total distance is lower than the sum
of the two distances between the points and the
original cluster centres of their original clusters.

• If this test is also successful, then make the swap permanent.
Otherwise, restore P and Q to their original clusters.

► FullOptimisation

Location: Found in the Clustering module

Purpose: This subroutine will move a point from one cluster to another if
certain criteria are satisfied, though these criteria are different to those
in SimpleReassignment. Specifically, it tries to minimise the total
distance from the points in a cluster to its cluster centre.

Firstly, the demand-weighted centres for each cluster is calculated.

Then, for each cluster, the sum of the distances between the points in
a cluster and its demand-weighted cluster centre are calculated. This
uses the subroutine CalcTotalDist, which can be found in the
Clustering module. Clusters with spare capacity are also flagged.

The main Do…Loop cycles through all points in turn, possibly
multiple times, until no more can be moved. For each point P:

• The cluster containing P is identified.
• The total distance (d1) between all points in this cluster and its

cluster centre is stored.
• P is temporarily removed from its cluster and both the demand-

weighted cluster centre and the total distance (d2) between the

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 10

9995-203

cluster points and the new cluster centre are re-calculated.
• P is then restored to its cluster.
• For each cluster with sufficient spare capacity to accommodate P,

the total distance (d3) between all points in this cluster and its
current cluster centre is stored.

• P is then added into this cluster and the demand-weighted cluster
centre and the total distance (d4) between the DP locations and
the new cluster centre are calculated.

• The cluster which gives the largest reduction in total distance (i.e.
which maximises ([d1-d2]-[d4-d3]) is identified.

• If no clusters give a reduction, then proceed to the next point.
• Otherwise, P is moved to the identified cluster provided that it

would also satisfy the normal distance constraint using its new
demand-weighted centre.

• The original cluster is flagged as now having spare capacity.
• The cluster that has received P is also checked to see if it still has

spare capacity.

► HighDemandSimpleReassignment

Location: Found in the Clustering module

Purpose: This is similar to SimpleReassignment, except that it only considers
points with high demand (more than one unit of demand). Firstly, the
demand-weighted centres for each cluster is calculated. Points with a
high demand (more than 1 and at most the absolute maximum cluster
capacity are then identified.

The main Do…Loop cycles through all points in turn, possibly
multiple times, until no more can be re-assigned. For each high-
demand point P in turn:

• Identify the cluster whose demand-weighted centre is closest to P.
• P is moved to this cluster if all the following are satisfied

– P is closer to this new cluster’s demand-weighted
centre than its current one

– the new cluster has sufficient spare capacity (using
the absolute maximum capacity limit, not the normal
cluster capacity limit)

– all points in the new cluster obey the distance
constraint with respect to the new cluster centre.

• If these are satisfied, then the cluster centres for both clusters
involved are re-calculated.

► HighDemandSwap

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 11

9995-203

Location: Found in the Clustering module

Purpose: This is similar to NormalSwap, except that it only considers points
with high demand (more than one unit of demand).The demand-
weighted centres for each cluster is calculated and high-demand
points are identified.

The main Do…Loop cycles through all points in turn, possibly
multiple times, until no more can be swapped. For each high-demand
point P in turn:

• The cluster whose demand-weighted centre is closest to P is
identified.

• If the cluster is not P’s current cluster and, if moving the point to
the new cluster violates the maximum capacity constraints, then
try to find a point in the new cluster which can be swapped with P
so that all the following are satisfied:

– the two new clusters both satisfy the cluster demand
constraint, but using the absolute maximum capacity
as the limit

– the sum of the two distances between the points and
their DP cluster centres is improved compared with
before

– both clusters obey the distance constraint with
respect to their new cluster demand-weighted centre.

• If such a point is found, then revise the two clusters and re-
calculate their demand-weighted centres.

• Otherwise, return the points to their original clusters.

► SingleDemandSwap

Location: Found in the Clustering module

Purpose: This is identical to HighDemandSwap, except that it only considers
points with one unit of demand.

WriteClusterResults

The first copper clustering phase for the urban deployment, which allocates locations to clusters
served by a DP, uses the following sequence of refinement subroutines:

• SimpleReassignment
• Swap
• FullOptimisation
• HighDemandSimpleReassignment

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 12

9995-203

• HighDemandSwap
• SingleDemandSwap
• SimpleReassignment
• Swap.

Having completed the clustering of the points, the cluster indices are printed on the output
worksheet for the ESA.

Location: Found in the Clustering module

Purpose: Writes the cluster indices for each location in column H of the output
worksheet for the ESA, beside its co-ordinates.

ClusterToPillarClusterLevel

Following the clustering of locations into DP clusters, a second clustering phase occurs by
grouping DP clusters into pillar clusters. In order to reuse the clustering subroutines described
above, local copies of the arrays containing the DP clustering data are taken, allowing the original
arrays to be reused for the second level of clustering. This is accomplished by a subroutine called
CopyClusteringArrays.

► CopyClusteringArrays

Location: Found in the CommonCode module

Purpose: Stores the values contained in:

• glNumPoints, which is the number of points to be clustered
• gNumChildClusters, which is the number of child clusters created
• glClusterAssignedTo(), which contains the cluster index for each

point
• glNumVerticesInCluster(), which contains the number of

locations in each cluster
• glClusterCapacity(), which contains the number of units of

demand within each cluster
• gobjInputPoints(), which contains data specific to each location,

including the co-ordinates and number of units of demand.

In particular, the DP cluster for each location is stored in glDPCluster().

The location of the DP that serves each DP cluster is defined as the location in the cluster closest
to its demand-weighted centre. The identity of this point is stored in the array
glClusterMainPoints(). The array gobjInputPoints() is then re-populated with the data for all the
DP clusters.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 13

9995-203

The subroutine DivisiveClustering is then reused to derive pillar clusters for the DP clusters. These
clusters are derived using only the points that are used as the DPs for the DP clusters. This
implicitly ensures that locations in the same DP cluster are in the same pillar cluster.

In this case, DPs are grouped into clusters served by pillars, using the subroutine
DivisiveClustering. This clusters a set of locations based on a capacity and a distance constraint
specific to pillars. These constraints are obviously larger than those used for clustering into DP
clusters.

InitialiseClusterAllocations, InitialiseParentCapacity, CalWeightedCentre, CalSquareMaxDInP
and the main Do..Loop follow as previously described. However, a different order of refinement
algorithms are used in this case, namely:

• SimpleReassignment
• Swap
• FullOptimisation
• SimpleReassignment
• Swap.

The resulting clustering data is then stored in separate arrays and the location-specific clustering
data is restored to its original arrays using CopyClusteringArrays. In particular, the:

• number of DPs in each pillar cluster is stored in glNumClustersInPillarCluster()
• total demand served by each pillar is stored in glPillarClusterCapacity()
• parent pillar of each DP is stored in glClusterToPillarCluster().

Having completed the first pass of the pillar clustering, a cleaning subroutine called
ConsolidatePillars is used to check whether any pillars can be merged without breaking the pillar
capacity and distance constraints. This is used in the urban deployment to merge points that are
isolated and are effectively served by their own pillar. Using this subroutine, these points are
reassigned to be served by their closest pillar that can accommodate the additional capacity.

► ConsolidatePillars

Location: Found in the Clustering module

Purpose: The subroutine IdentifyPillars is first used to define a pillar for each
pillar cluster. Local copies are then made of the following arrays:

• glPillarClusterCapacity()
• glNumClustersInPillarCluster()
• glPillarClusterMainPoints()
• glClusterToPillarCluster().

An array of the original pillar indices is also populated. This is to

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 14

9995-203

track the merging of the pillar clusters.

The pillars are then sorted into descending order of capacity, using
the subroutine NearestPointsQuickSort. An array mapping the sorted
pillar indices to the original indices,
lngCopyPillarClusterIndexesINVERSE(), is then populated.

The main loop then considers pillar clusters P in descending order of
capacity until no more consolidation is possible. For each pillar
cluster P, every other pillar cluster Q is considered in turn for
potential merging:

• If the total capacity of P and Q is less than the absolute maximum
pillar cluster capacity, then temporarily merge the locations from
P and Q into a single cluster (R) and re-calculate the pillar
location for R using ReIdentifyPillar.

• A merge is stated to be possible if:
– R would satisfy the (absolute) pillar capacity

constraint and distance constraint with itsnew pillar
location

– (only for urban deployments) if the capacity of P is
smaller than some critical value, regardless of the
result of the distance constraint test.

• If the merge is possible, then Q is labelled as a possible merge
with P in lng_tempClusterwhichcanmerge() and the distance
between the cluster centres of P and Q is stored in
dbl_tempClusterCentre_distance().

• Having checked through all possible Q, if the list of candidate
pillar clusters for merging with P is empty, then flag that P cannot
be merged with any other clusters. It is then not considered for
further consolidation in the rest of the algorithm.

• If the list is not empty, then merge P with the pillar cluster Q in
the list whose cluster centre is closest to P’s pillar and use
ReIdentifyPillar to calculate the new pillar location.

The subroutines IdentifyPillars and ReIdentifyPillar are described in more detail below.

IdentifyPillars

Location: Found in the Clustering module

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 15

9995-203

Purpose: For the urban deployment, pillar locations are identified as one of the
DP locations in the cluster. The location defined as the pillar for each
pillar cluster is stored in glPillarClusterMainPoints().

For the case of the pillar cluster containing the RAU, the pillar
location is defined to be the RAU.

Otherwise, the demand-unweighted centre of all the locations in the
pillar locations using the subroutine
CalUnWeightedPillarclusterCentre, found in the Clustering module.

The DP location that is closest to this demand-unweighted centre is
then defined as the pillar location for that pillar cluster.

The subroutine ReIdentifyPillar is identical to IdentifyPillar in every
respect, except that it recalculates the pillar location for a single pillar
cluster, rather than every pillar cluster.

CalculateFibreUnitsOfDemand

Location: Found in the Clustering module

Purpose: Calculates the demand served by fibre in each pillar cluster, by
identifying those points that are served by fibre. This is stored in the
array glDemandServedByFibreByPillar ().

IdentifyDistPoints

Location: Found in the Clustering module

Purpose: This subroutine can only be used after the pillar locations have been
defined. It redefines the DP location as the location in the DP cluster
that is closest to the pillar location, rather than the demand-weighted
centre. The only exceptions are when the DP is also a pillar location,
in which case the previous DP location is retained.

The new identities of the DP locations are used to update the array
glClusterMainPoints().

2.3.2 Copper DP cluster spanning tree phase

Having defined the clusters and locations of DPs and pillars, the subroutine
ConstructTreeFollowingClusterMainPointIdentification derives the minimum spanning trees for

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 16

9995-203

each cluster. It begins with the subroutines GetMaxPointsInCluster and
SetupArraysForSpanningTree, which requires information from across all the spanning trees.

GetMaxPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Identifies the maximum number of points in a DP cluster across all
DP clusters.

SetupArraysForSpanningTree

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Dimensions the key arrays for the minimum spanning tree process:

• glUnattachedPoint() – the list of locations in the cluster that are
unattached at any point in the algorithm

• glAttachedPoints() – the list of locations in the cluster that are
attached at any point in the algorithm

• glVertexRoute() – for any location, the location that it passes
through in order to get back to the node location

• gdDistanceMatrix() – stores the distance between any two points
in the cluster

• gobjEdges() – stores the vertices and lengths associated with each
edge in the spanning tree.

Following these two subroutines, each DP cluster is then treated in turn. The following subroutines
are used in order to create and store the calculations:

• SetupPointsInCluster – identifies the central point in the cluster
• SetupGdDistanceMatrix – calculates the required distances
• ConstructTree – constructs the minimum spanning tree for the cluster
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node
• GetTotalDistance – calculates the total trench within the tree
• GetSheathLength – calculates the total copper sheath within the tree
• GetCopperLength – calculates the total copper pair length within the tree
• WriteNetworkResults – writes the list of edges in the spanning tree onto the output worksheet.

SetupPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 17

9995-203

Purpose: • Calculates the number of points in the cluster
• Identifies the node for the cluster i.e. the DP location for the DP

cluster and states this location as the central point cp.

SetupGdDistanceMatrix

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For the urban deployment, calculates the straight-line distance
between any two pairs of points and stores these distances in the array
gdDistanceMatrix().

ConstructTree

In order to derive the spanning tree for the cluster, the algorithm begins with the central point cp
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached.
Locations are then added to the tree incrementally. Each time a location is linked to the tree, it
becomes attached and the lists of attached and unattached locations are updated using the function
IdentifyAttachedAndUnattachedPoints.

► IdentifyAttachedAndUnattachedPoints

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Moves through the entire set of points and enumerates them using
two arrays, glUnattachedPoint() and glAttachedPoints().
glUnattachedPoint(j)=k means that point k is the jth point in the list
that is unattached. Similarly, glAttachedPoint(j)=k means that point k
is the jth point in the list that is attached.

In order to determine which location to join to the tree, the algorithm calculates the average cost
per unit of demand of linking an unattached point P to an attached point Q using a trench and a
cable on the existing tree. This is determined by the function AverageCostPerLine.

► AverageCostPerLine

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For the urban deployment, it determines the:

• Extra capacity and the copper pair requirements (c) needed to
serve the unattached point.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 18

9995-203

• Length of extra trench distance (d) to link the attached and
unattached point.

The cost of the new link is then calculated using the proxy cost
expression:

k1*d + k2*c + k3*d*c + k4*√c

and calculates the new cost per unit of demand for the entire tree.

For each unattached point P, the edge to connect each attached point Q to the tree is considered.
The edge that gives the lowest new average cost per unit of demand for the whole tree is stored in
the array objEdgeList() using AddToEdgeList.

► AddToEdgeList

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Having identified the best edge by which to join a particular point to
the existing tree, this subroutine stores the vertices of this edge and its
average cost per unit of demand.

Having stored the best edge to link each unattached point P to the tree in objEdgeList(), the edge
that gives the overall lowest new average cost per line is then permanently added to the tree using
AddCheapestEdgeInListToObjEdges.

► AddCheapestEdgeInListToObjEdges

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Adds the best edge in objEdgeList(), in terms of average cost per
line, to the list of edges for the minimum spanning tree.

• Updates the array glVertexRoute() for this new edge in the tree,
defined by:

 glVertexRoute(unattached location on new edge) = attached
locations on new edge

• Updates the total copper length required to link the location all
the way back to the node.

The number of unattached points is reduced by 1 and the lists of attached and unattached points
updated using IdentifyAttachedAndUnattachedPoints. The loop in ConstructTree continues until
all locations in the cluster are part of the spanning tree.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 19

9995-203

StoreRoutes

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For each point P in the cluster, this stores the point Q that it passes
back through in order to reach the DP, with the array defined as:

glRouteToCentre(P) = Q

GetTotalDistance

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total trench in the spanning tree, by cycling through all
points P in the cluster and calculating the distance between P and its
predecessor on its way back to the DP.

GetSheathLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total cable sheath in the spanning tree, by cycling
through all points in the cluster and calculating the distance between
P and its predecessor back to the DP. It then multiplies this by the
sheath requirements for the link given the demand at P.

GetCopperLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total copper cable length in the spanning tree, by
cycling through all points P in the cluster and calculating the distance
between P and its predecessor back to the DP. It then multiplies this
by the copper pair requirements given the demand at P.

WriteNetworkResults

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Writes the points and their co-ordinates in the output worksheet
for the ESA (in rows BF–BM) that define every edge in the
spanning trees for the DP clusters.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 20

9995-203

• Write the number of ducts needed, by type, for each edge.

• Determines how many extra pits are required along these edges.

• Writes the DP locations, their co-ordinates and their parent pillar
in the output worksheet for the ESA (in rows BX–CD).

2.3.3 Copper DP cluster connection phase

This phase is run through the ConnectClusters subroutine, which is found in the ClusterToCluster
module. This joins up all the DP locations within a pillar cluster back to the pillar using the
subroutine RunAtClusterLevel, which also lies in ClusterToCluster module. This subroutine is
only used if there is more than one DP location in the pillar cluster.

Firstly, the largest number of DP locations to be found in any pillar is calculated. Then,
RunAtClusterLevel executes several subroutines:

• SetUpClusterPairIndex
• IndexClusterWithinPillarCluster
• SortPairsOfClusters
• RoutePointsForCluster
• ApplyDijkstra (contained within RoutePointsForCluster).

SetUpClusterPairIndex

Location: Found in the ClusterToCluster module

Purpose: Indexes pairs of DPs in a pillar area so that each unordered pair
occurs exactly once. The index uses triangular numbers: e.g. for four
DPs, (DP1,DP2) → 1, (DP1,DP3) → 2, (DP1,DP4) → 3, (DP2,DP3)
→ 4, (DP2,DP4) → 5, (DP3,DP4) → 6

IndexClusterWithinPillarCluster

Location: Found in the ClusterToCluster module

Purpose: This creates a new indexing ClusterIndex() of DP clusters in a pillar
cluster so that they are numbered from 1 to n, where n is the number.

For example, if we are looking at the second pillar cluster and the
first DP cluster within this pillar cluster is DP cluster 100, then
ClusterIndex(1)=100. An inverse mapping InverseClusterIndex() is

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 21

9995-203

also stored, so that we can move between the two indices.

Following IndexClusterWithinPillarCluster, the DP that is the pillar location is identified.

SortPairsOfClusters

Location: Found in the ClusterToCluster module

Purpose: • For each pair of DP clusters in this pillar cluster:
– calculate how many unique pairs of points there are

which have one point from each DP cluster
– explicitly identify these pairs of points and, for each

pair, calculate the distance between the two points
– sort the pairs of points in order of this distance, with

the closest pair of points listed first.

RoutePointsForCluster

This subroutine is found in the ClusterToCluster module. Its purpose is to calculate, for each pair
of DP locations, the connection, possibly via other DP locations, that has the lowest cost
(according to our proxy cost function k1*d + k2*c + k3*d*c + k4*√c).

A linkage between two DPs can be split into two components: a component that uses only
additional trench and a component that uses only existing trench.

The proxy cost function for costing up a part of a link which requires new trench assumes
additional trench cost. This is calculated using M1 * new trench length LN, where the cost
multiplier M1 = k1 + (k3 * cabling capacity CD) + (k4 * √CD).

The proxy cost function for costing up a part of a link which uses only existing trench assumes no
additional trench cost. The cost of this is calculated by using M2 * existing trench length LE, where
the cost multiplier M2 = (k3 * cabling capacity CD) + (k4 * √CD).

These separate cost multipliers M1 and M2 are calculated for each pair of DPs and stored in the
arrays dCostMultiplier1() and dCostMultiplier2() respectively. AS shown above, these multipliers
depend on the value of CD, which itself depends on whether this part of the network is assumed to
be tapered or non-tapered, as shown below in Table 2.1.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 22

9995-203

Assumption of
distribution network

CD Joints required

Fully tapered Smallest cable size in the
distribution network that
accommodates the larger of
the demands served by the
two DPs

Smallest cable size in
the distribution network
that accommodates the
larger of the demands
served by the two DPs

Non-tapered Number of pairs in the main
cable size used in the
distribution network

Equal to the larger of
the demands served by
the two DPs

Table 2.1: Calculation

of jointing and CN

[Source: Analysys]

The remainder of RoutePointsForCluster then proceeds as follows, for each pair of DP clusters:

• Identify the pair of points, 1 from each DP cluster, which are the closest (at a distance d apart,
calculated using the p–function).

• Calculate the sum of the distances DT of each point in the pair back to its respective DPs.

• The proxy cost of linking the two DP clusters together through these points is then assumed to
be (M1 * d) + (M2 * DT).

• For each pair of DP clusters, identify the pair of points which give the lowest proxy cost: this
gives a fully meshed set of linkages between all DPs.

• We then apply a version of the Dijkstra algorithm using the subroutine ApplyDijkstra. This
identifies a subset of these linkages that can link all DPs back to the RAU at the lowest cost.

ApplyDijkstra

Location: Found in the ClusterToCluster module

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route
between any DP cluster and the pillar node, using the calculated
mesh of linkages.

• Set lIncoming() for each DP, by default, to be its own demand.

• Assume, provisionally, that all DPs are connected directly to the
pillar.

• Start the algorithm with the pillar.

• For every other DP, recall the requirements for linking it to the
pillar:

– extra trench
– cost of linking the two DPs
– cabling cost of linking the two DPs (i.e. excluding

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 23

9995-203

trench cost)
– joints required, using GetJointingCosts
– total sheath length between them.

• Execute the following loop whilst there are still unconnected
DPs, starting at the pillar:

– for a given connected DP i, look through the
unconnected DPs and determine which DP (j)is the
most cost effective to link directly to DP i

– update the array lIncoming(i), which is defined as the
total demand passing through the DP on the way back
to the pillar, to include the demand at j

– for each unconnected DP, test to see if its currently
identified path to the pillar has a lower proxy cost
than if it were to go through i. If the proxy cost is
lower, then set its provisional route back to the pillar
to be via i and update lIncoming() accordingly

– for each unconnected DP k, test this by:
o calculating all the extra jointing costs of

going through DP i (possibly via other DPs)
back to the pillar, rather than direct

o if ([total cabling cost of linking k to pillar via
i] +[extra jointing costs of linking k to pillar
via i] + [the cost of linking k to DP i]) < cost
of linking k to the pillar directly, then set the
provisional link for k to be via DP i

– set i to be the DP that was just connected (j) and
return to the start of the loop.

• When all DPs have been connected back to the RAU, aggregate:
– extra trench to join all DP clusters in the pillar cluster

to the pillar location
– demand-related jointing required
– number of branching kits required
– distance related jointing required (non-tapered case

only)
– incremental copper sheath required
– incremental copper sheath by cable size
– incremental copper km required
– the routes that DPs take back to their parent pillar, in

glPreviousClusterBackToPillar().

This subroutines refers to several other functions within it, which are explained below. These are
GetJointingCosts and CostOfEdgesCountedTwice.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 24

9995-203

► GetJointingCosts

Location: Found in the ClusterToCluster module

Purpose: This identifies the jointing required for a particular link from a DP i
back to the pillar. The calculation depends on whether the network is
assumed to be fully tapered or non-tapered:

In the tapered case, we revise the cabling required on each link
required on the path from i back to the pillar based on the cable sizes
available to us. The jointing is then aggregated at each DP on the path
that i takes back to the pillar, each time adding on the demand at the
DP and the downstream cable capacity.

In the non-tapered case, we revise the cabling required on each link
required on the path from i back to the pillar based on the main and
minor cable sizes assumed. The jointing is then aggregated at each
DP on the path that i takes back to the pillar, each time adding on the
demand at the DP. A full joint of the cable is only included at regular
distance intervals, rather than at every DP.

The final step in ApplyDijkstra is to calculate the sheath requirements for each link within the
pillar cluster, using the subroutine CalculateDuctByType.

► CalculateDuctByType

Location: Found in the CalculateDuct module

Purpose: Identifies the number of sheaths by cabling type within each DP–DP
link in the pillar clusters, as preparation for the derivation of the
number of ducts within each link in the subroutine WriteDuctOutputs.

If the cabling within the DP–pillar network is assumed to be tapered,
then 1 sheath is assumed to be required within each link.

If the cabling within the DP–pillar network is assumed to be non-
tapered, then the sheath requirements are derived with
GetNonTaperedSheath.

For each DP–DP link and each edge within these links, the number of
sheaths required is calculated and stored as intra-pillar (copper) duct.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 25

9995-203

2.3.4 Copper pillar connection phase

The latter part of ConnectClusters is also used to drive the connection of pillars to RAU. Firstly,
the largest number of DP locations to be found in any pillar is calculated and the arrays
lClusterIndex(), lInverseClusterIndex(), lClusterPairIndex() are resized.

RunAtPillarClusterLevel, which is found in the PillarClusterToPillarcluster module, then runs the
following subroutines:

• SetUpClusterPairIndex
• SortPairsOfPillarClusters
• RoutePointsForPillarCluster
• ApplyDijkstraForPillarClusters (within RoutePointsForPillarCluster).

SetUpClusterPairIndex

Location: Found in the PillarClusterToPillarcluster module

Purpose: This sets up an index for pairs of pillar clusters, so that each
unordered pair occurs exactly once. The index uses triangular
numbers: e.g. for four pillars, (P1,P2) → 1, (P1,P3) → 2, (P1,P4) →
3, (P2,P3) → 4, (P2,P4) → 5, (P3,P4) → 6

SortPairsOfPillarClusters

Location: Found in the PillarClusterToPillarcluster module

Purpose: • For each pair of pillar clusters in the ESA:
– calculate how many unique pairs of DPs there are

which have one DP from each pillar cluster
– explicitly identify these pairs of DPs and, for each

pair, calculate the distance between the two DPs using
the p-function

– sort the pairs of DPs in order of this distance, with
the closest pair of DPs listed first.

RoutePointsForPillarCluster

Location: Found in the PillarClusterToPillarcluster module

Purpose: • Finds the least proxy cost route for connections between pillar
clusters and then connections to the RAU.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 26

9995-203

• This assumes that:
– if the route for a pillar location back to the RAU goes

through other pillar clusters, then it passes through
their pillar locations

– it also assumed that each pillar–RAU link is a
discrete cable.

• The proxy cost function when costing up linkages with new
trench assume additional trench cost [uses a cost multiplier of M1
= k1 * + (k3 * pillar–RAU cabling capacity CD) + (k4 * √CD), to
multiply by the new trench length LN].

• The proxy cost function when costing up linkages through
existing trenches assume no additional trench cost [uses a cost
multiplier of M2 = (k3 * pillar–RAU cabling capacity CD) + (k4 *
√CD), to multiply by the existing trench length LE].

• When costing the links between any two pillar locations, for each
unique pair of pillar clusters:

– identify the pair of DPs (with one from each pillar
cluster) which are the closest (a distance d apart,
calculated with the p–function)

– calculate the sum of their distances back to their
respective pillars, DT

– the proxy cost of linking the two pillars clusters
together through these DPs is then assumed to be
(M1 * d) + (M2 * DT)

• For comparing the costs of linking two pillars, since the cable
capacity between a pillar and the RAU is constant, jointing proxy
costs are not included in our sum, so k2 is not included above.

• For each pair of pillar clusters, identify the pair of DPs which
give the lowest linking proxy cost.

• Add on the jointing cost for each of these best linkages.

• This gives us a fully meshed set of linkages between all pillars.

• These linkages are stored in the array C2CEdgePillar().

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 27

9995-203

ApplyDijkstraForPillarClusters (within RoutePointsForPillarCluster).

Location: Found in the PillarClusterToPillarcluster module

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route
between any pillar and the RAU, using these linkages.

• For every other pillar, recall the requirements for linking it to the
RAU:

– extra trench
– cost of linking the two pillars
– cabling cost of linking the two pillars (i.e. excluding

trench cost)
– (effectively) total sheath length between them.

• Assume, provisionally, that all pillars are connected directly to
the RAU.

• Start with the RAU.

• Then, execute the following loop whilst there are still
unconnected pillars:

– for a given (connected) pillar i, look through the
remaining unconnected pillars and decide which pillar (j)
is the most cost effective to link directly to pillar i

– then, for each unconnected pillar k, test to see if there is a
cheaper proxy cost in linking it back to the RAU by
going through i, or via the current provisional path, by:
o calculating all the extra jointing costs of going

through pillar i (possibly via other pillars) back to the
RAU, rather than its existing path

o if ([total cabling cost of linking k to RAU via i]
+[extra jointing costs of linking k to RAU via i] + [the
cost of linking k to pillar i]) < cost of linking k to the
RAU directly, then set the link for k to be via pillar i

– set i to be the pillar that was just connected (j) and return
to the start of the loop.

• When all pillars have been connected, calculate:
– total extra trench required to join all pillars to the RAU
– incremental copper sheath required to link the pillar

location back to the RAU, for each pillar cluster
– for each pillar, the previous pillar on its way back to the

RAU, stored in glPreviousPillarCentre().

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 28

9995-203

2.3.5 Fibre determination phase

Having completed the trench network for the copper network, the algorithm then seeks to overlay
a fibre network to serve the locations of high demand. There are two paths to follow for this
section depending on whether the fibre implementation uses a series of fibre rings or point-to-point
connections. These are handled by the subroutines IncludePillarsInFibreRingForHighDemand and
LinkFibrePointsDirectlyToPillar respectively, which are both found in the BuildFibreRing
module.

IncludePillarsInFibreRingForHighDemand

For the urban deployment, this subroutine derives a series of fibre rings passing through some or
all of the pillar locations. The extra trench and cables required to create this rings is derived. The
incremental fibre sheath and cable required to link the fibre-fed locations back to their parent pillar
and onto the fibre ring are then also calculated.

• For each pillar cluster, the number of DPs are identified.

• The pillar clusters that are to be included within the fibre rings are then identified: this may be
all of them, or it may only be those that serve fibre-fed locations. Those pillars to be included
are flagged using the array gBolPillarClusterInAFibreRing().

• The subroutine ClusterNodesForFibreRing groups the identified pillars into a set of clusters,
each one to be served by a ring.

► ClusterNodesForFibreRing

Location: Found in the BuildFibreRing module

Purpose: • The data contained within the arrays used in the clustering
algorithms is first backed up into local arrays. In particular, the
data contained within gobjInputPoints() is stored in
objgIndividualPoints_FibreRing().

• The clustering arrays are then re-populated with the data for the
pillars to be put into a fibre ring.

• Using the maximum number of nodes that can be in a fibre ring
(glMaxNodesInFibreRing), the number of rings required is then
calculated. This in turn sets the capacity constraint for the fibre
ring clustering, by attempting to achieve a balance in the number
of pillars in each ring.

• The subroutine DivisiveClustering, found in the Clustering
module, is then used to cluster the pillars into fibre rings. An

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 29

9995-203

effectively infinite distance constraint is used and the design of
the clustering algorithms means that the RAU always lies in each
of the clusters.

• The allocation of each pillar to a fibre ring is then stored in
glPillarClusterToFibreRing() and the clustering arrays are
restored to their original values.

• Each fibre ring is then mapped into the array
glFibreRingToPillarMapping(), defined by:

glFibreRingToPillarMapping(j,k) = kth pillar in the ith fibre ring

• The first pillar in each ring is always defined to be the RAU.

• For each ring, the total number of fibres that the ring serves across all the pillar (barring the
RAU) is calculated. This assumes a fixed number of fibre (glFibrePairsDPToPillar) for each
fibre-served location. This number of fibres is stored in glTotalFibreDemandOnRing().

• The subroutine RunAtFibreRingLevel then identifies the lowest cost linkages between each
pair of pillar location, assuming the existing trench network for the copper served locations.

► RunAtFibreRingLevel

Location: Found in the PillarClusterToPillarCluster module

Purpose: • This runs several subroutines similar to those run in the copper
pillar connection phase. These subroutines are:

• SetUpClusterPairIndex, as explained in section 2.4.5
• SortPairsOfPillarClusters, as explained in section 2.3.4
• RoutePointsForFibreRing, as explained below.

► RoutePointsForFibreRing

Location: Found in the PillarClusterToPillarCluster module

Purpose: • Finds the least proxy cost route for connections between any two
pillar clusters.

• The proxy cost function when costing up linkages with new
trench assume additional trench cost [uses a cost multiplier of M1
= k1 * + (k3 * DP–pillar cabling capacity CD) + (k4 * √CD), to
multiply by the new trench length LN].

• The proxy cost function when costing up linkages through

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 30

9995-203

existing trenches assume no additional trench cost [uses a cost
multiplier of M2 = (k3 * DP–pillar fibre cabling CD) + (k4 * √CD),
to multiply by the existing trench length LE].

• A single estimate of the total fibre cable used in any pillar–pillar
link is made by taking the maximum of the cable sizes required
on the fibre rings, estimated using ProxyCableToUseInFibreRing.
This is only used within the proxy cost functions.

• When costing the links between any two pillar locations, for each
unique pair of pillar clusters:

– identify the pair of DPs (with 1 from each pillar
cluster) which are the closest (a distance d apart,
calculated with the p–function)

– calculate the sum of their distances back to their
respective pillars, DT.

• The proxy cost of linking the two pillars clusters together through
these DPs is then assumed to be (M1 * d) + (M2 * DT).

• For each pair of pillar clusters, identify the pair of DPs which
give the lowest linking proxy cost.

• This gives us a fully meshed set of linkages between all pillars.

• These linkages are stored in the array C2CFibreRing().

► ProxyCableToUseInFibreRing

Location: Found in the BuildFibreRing module

Purpose: This identifies a single fibre cable size to use for the proxy cost
function used to determine the lowest cost paths between any pair of
pillar locations.

• For each fibre ring, the smallest fibre cable size that can
accommodate the total capacity on that ring is identified.

• If no single cable size has enough capacity, then the combination
of the two largest cable sizes that gives enough capacity is
identified.

• The largest cable requirement across all fibre rings is then used as
the single estimate of the required cable size.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 31

9995-203

For each fibre ring, the following subroutines are then run to determine the best ring formation for
the pillars in this ring:

• RunTheTSPAlgorithm
• UpdateFibreCableAndTrenchArrays
• TotalTrenchForThisFibreRing
• TotalCableForThisFibreRing.

► RunTheTSPAlgorithm

Location: Found in the RunTSP module

Purpose: This version of the algorithm is almost identical to that of the
subroutine RunTSP in the core network algorithms, as described in
section 3.3.

It uses a Travelling Salesman Problem (TSP) algorithm to derive the
most efficient ring structure to join a set of points.

Versions of the relevant Visual Basic code are contained in:

• the modules InitialiseTSP, RunTSP and ShortestRing
• the class modules clsClusterPair, clsRing, clsTSPData and

clsTSPInputData.

► UpdateFibreCableAndTrenchArrays

Location: Found in the BuildFibreRing module

Purpose: For a given fibre ring, this stores particular data about the fibre ring,
including:

• the next pillar in the ring for each given pillar
• whether, for each link in the ring, the trench already exists from

the copper deployment or not
• the pillar that is first on the ring after the RAU.

► TotalTrenchForThisFibreRing

Location: Found in the BuildFibreRing module

Purpose: Calculates the extra trench required to connect the pillars in a given
fibre ring.

► TotalCableForThisFibreRing

Location: Found in the BuildFibreRing module

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 32

9995-203

Purpose: Calculates the total fibre sheath and cable lengths required to connect
the pillars in a given fibre ring

• For the given fibre ring, the smallest fibre cable size that can
accommodate the total capacity on that ring is identified.

• If no single cable size has enough capacity, then the combination
of the two largest cable sizes that gives enough capacity is
identified.

Having calculated the trench and cable requirements for the fibre rings,
IncludePillarsInFibreRingForHighDemand then calculates:

• The fibre sheath needed to join each fibre-fed location back to its parent pillar, by using the
same path followed by the copper network (each fibre-fed location has a nominal unit of
demand served by the copper network).

• The fibre cable length needed to join each fibre-fed location back to its parent pillar on a
pillar-by-pillar basis, by multiplying the total FDP–DP and DP–pillar fibre sheath lengths by
their respective assumed fibre cable sizes.

• The fibre-specific duct required, using CalculateFibreDuctByType for links back to the pillar
and CalculateDuctsForFibreBackFromPillar for links from the pillar back to the RAU.

LinkFibrePointsDirectlyToPillar

Location: Found in the BuildFibreRing module

Purpose: This calculates the fibre sheath and cable length requirements for
joining each fibre-fed location back to its parent RAU via its parent
DP and pillar. This uses the path determined by the nominal unit of
demand assigned to each fibre-served location in the copper network.

This function does not need incremental trench, since the existing
trench network is assumed to be used as the path back to the RAU.

For the urban deployment:

• The number of DPs in each pillar cluster are calculated.

• Fibre-fed locations are flagged in the array bolPointFedByFibre().

• DPs served only by fibre are flagged by bolDPServedByFibre().

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 33

9995-203

• The fibre sheath needed to join each fibre-fed location back to its
parent RAU is calculated, by using the same path followed by the
copper network.

• The fibre length needed to join each fibre-fed location back to its
parent RAU is calculated for each pillar cluster, by multiplying
the total FDP–DP, DP–pillar fibre sheath lengths by their
respective assumed fibre cable sizes.

• The pillar-RAU fibre sheath length is assumed to be the same as
that for the analogous connection in the copper network

• The pillar-RAU fibre length is assumed to be the fibre sheath
length multiplied by the assumed fibre cable size in the DP–pillar
part of the network.

• A discrete cable is assumed for each fibre-fed location all the way
back to the RAU (point-to-point architecture).

• The amount of fibre-specific duct required is calculated using
CalculateFibreDuctByType for links back to the pillar and
CalculateDuctsForFibreBackFromPillar for the links from the
pillar back to the RAU.

► CalculateFibreDuctByType

Location: Found in the CalculateDuct module

Purpose: This calculates the duct required for the entire route for each fibre
cable from the fibre-fed FDPs back to the pillar.

► CalculateDuctsForFibreBackFromPillar

Location: Found in the CalculateDuct module

Purpose: Where point-to-point fibre is used, this calculates the duct required
for the entire route for each fibre-fed FDP from its parent pillar back
to the RAU.

Where fibre rings are used, this calculates the duct required for the
entire route for each pillar-pillar link in the ring(s).

2.3.6 Backhaul determination phase

Having calculated the copper and fibre networks for an urban deployment for the ESA, the
backhaul requirements for each access node are then derived. For example, pillars may be too far

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 34

9995-203

from the RAU to be linked by copper, in which case a large pair gains system (LPGS) is installed
and a fibre link replaces the copper link. This is accomplished by the subroutine
DetermineBackhaulForCopperServedAreas.

DetermineBackhaulForCopperServedAreas

Location: Found in the WirelessAndSatellite module

Purpose: First of all, this subroutine analyses the cable between the copper
nodes and the RAU, in order to remove double-counted cables. This
is accomplished using the subroutine
RemoveUrbanDoubleBackMainCable, as described below.

Secondly, it identifies whether a copper node should in fact be an
LPGS and, if so, whether it should have fibre, wireless or even
satellite backhaul. It runs through each pillar in turn:

• The RAU cannot be an LPGS, so it is labelled as a RAU.

• For all other pillars, the maximum loop length across all the
locations in the pillar cluster (from FDP to RAU) is calculated.

• If this distance is less than a maximum threshold for using an
LPGS(gdMaxCableDistanceBeforeUsingLPGS), then a pillar is
still used and the jointing required between the pillar and the
RAU is derived and stored in gdPillarRAUJointing().

• If this distance is higher than the threshold, then an LPGS is
required. The type of backhaul link is then determined as follows:

– if the network is either including all pillars in a fibre
ring, or is linking all pillars with fibre-fed locations
into fibre rings and this pillar has fibre-fed locations,
then it will already have a backhaul ink via the fibre
ring. So, we remove the pillar–RAU link, provided
that it does not form part of the fibre ring

– for the urban deployment, LPGS are otherwise
assumed to be linked to the RAU by a fibre.

Having completed the backhaul determination, the nature of each
location in the ESA can then be finalised using the subroutine
DetermineLocationType.

► RemoveUrbanDoubleBackMainCable

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 35

9995-203

Location: Found in the PillarClusterToPillarClustermodule

Purpose: For each pillar cluster in turn, this subroutine considers the route that
the cable takes from the pillar back to the RAU. Specifically,:

• counts the number of times that this cable passes through each
link in the trench network

• reduces this count where it is more than 1 to remove instances
where the cable doubles back on itself

• adjusts the recorded length of the cable for the pillar in
gdSheathLengthToConnectPillarClusters() accordingly

► DetermineLocationType

Location: Found in the OutputResults module

Purpose: For the urban deployment, this subroutine first identifies all DP
locations, labelling all other locations as FDPs. It then overwrites the
main node locations, namely the RAU, the pillars and LPGS.

2.3.7 Result storage phase

The remaining outputs of the network asset volumes are printed to the output worksheet for the
ESA by the subroutine OutputTheResults.

OutputTheResults

Location: Found in the OutputResults module

Purpose: This prints the remaining network volumes to the output worksheet
for the ESA in the relevant Access DATA workbook.

Specifically, the subroutine:

• calculates the average loop length for each pillar cluster
• prints the network volumes for the cluster containing the RAU
• prints the aggregated volumes for the ESA, including:

– trench between pillars and the RAU
– fibre sheath for the fibre rings
– fibre length for the fibre rings
– number of fibre rings
– number of relay stations

• prints the network volumes for every other pillar cluster

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 36

9995-203

• prints the identity of the next pillar on the fibre ring for each
pillar, if applicable

• prints the fibre links from the RAU if there is more than one fibre
ring (the line for the RAU cluster can only indicate one of these
links)

• prints the pillar indices for each DP cluster, into column U
• prints the edges in the spanning trees at the DP–pillar and pillar–

RAU level of the network, using WriteConnectClustersResults
• prints the incremental trench for the fibre rings, using

WriteFibreRingResults
• prints the duct requirements for each link in the trench network,

using WriteDuctOutputs
• identifies each location as being served by either copper or fibre
• estimates the cable lengths by cable size, using

CalculateTotalSheathLengthByCableSize, as explained below.

► WriteFibreRingResults

Location: Found in the BuildFibreRing module

Purpose: Identifies the incremental trench links required for the fibre rings and
calculates the additional manholes required (if any) on these links.

► WriteDuctOutputs

Location: Found in the CalculateDuct module

Purpose: For each link in the trench network, the number of ducts required by
type are calculated, determined by how many cables of each type
there are passing through the link and the capacity of each type of
duct.

The number of ducts that are provisioned (based on the allowed
multiples) is also determined for each link. The length of each link,
using either crow-flies or p-function, is also derived.

Finally, the type of pit required at each DP location is also
determined.

► CalculateTotalSheathLengthByCableSize

Location: Found in the OutputResults module

Purpose: For the urban deployment, this estimates the cable lengths by cable
size within the DP clusters:

• for each level of demand, the number of sheaths of each cable

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 37

9995-203

size used to serve that demand are stored in the array
glCableRequirementsByDemand()

• across all locations, the sheath requirements for each cable size
are then aggregated in the array gdSheathLengthByCableSize()

• the total length required of each cable size is then printed in the
output worksheet for the ESA

• the sheath length by cable size within the distribution network is
also printed here, having been pre-calculated in ApplyDijkstra.

2.3.8 Assumption storage phase

The assumptions used within the calculation are printed onto the output worksheet for the ESA,
using the subroutines RecordAssumptions.

RecordAssumptions

Location: Found in the CommonCode module

Purpose: This prints all of the assumptions used in the calculation of access
network asset volumes.

For an urban deployment, it prints:

• capacity and distance constraints for the nodes used in the
network

• technical constraints for the fibre rings and copper jointing
• cables used in the non-tapered distribution network (if applicable)
• coefficients for the p–function used
• coefficients for the proxy cost function
• cost assumptions used (in the urban case, for the fibre and

wireless backhaul cost comparisons for LPGS backhaul).

Finally, in order to reduce congestion in the computer’s memory, the subroutine EraseArrays
(found in the MainMacros modules) uses the Erase statement to destroy global arrays populated
separately for each ESA, releasing the allocated memory.

2.4 Rural deployment path

There are thirteen phases when using a rural deployment for an ESA:

• initial copper clustering phase, which is described in section 2.4.1
• copper or wireless determination phase, which is described in section 2.4.2
• copper clustering phase, which is described in section 2.4.3

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 38

9995-203

• copper pillar cluster spanning tree phase, which is described in section 2.4.4
• copper cluster connection phase, which is described in section 2.4.5
• backhaul determination phase, which is described in section 2.4.6
• fibre determination phase, which is described in section 2.4.7
• copper result storage phase, which is described in section 2.4.8
• wireless clustering phase, which is described in section 2.4.9
• satellite determination phase, which is described in section 2.4.10
• wireless backhaul determination phase, which is described in section 2.4.11
• copper and fibre result storage phase, which is described in section 2.4.12
• assumption storage phase, which is described in section 2.4.13.

2.4.1 Initial copper clustering phase

This is run through the subroutine AllClusteringMethods, which is found in the MainMacros
module. Three subroutines are driven by AllClusteringMethods in the rural case:

• IdentifyRAU
• DivisiveClustering
• PassDirectToPillarClusterLevel.

These are explained in more detail in the following sub-sections.

IdentifyRAU

Location: Found in the Clustering module

Purpose: Determines a location from a list of input locations to be a suitable
location for the RAU in an ESA. Currently, each ESA in the Access
DATA workbook uses the first location in the list as the location of
the RAU, since that is where the actual location given by
ExchangeInfo is stored.

In this case, the value of the variable glStatedRAUvertex must be
positive and the RAU is assumed to be at this location. Otherwise, the
location closest to the demand-weighted centre of the locations in the
ESA is used. There are three sets of objects that can be used for this
calculation by IdentifyRAU: locations and pillars.

In relation to the rural clustering phase, the individual locations are
used.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 39

9995-203

DivisiveClustering

In this case, FDPs are grouped directly into clusters served by pillars, using the subroutine
DivisiveClustering. This clusters a set of locations based on a capacity and a distance constraint.
For the rural deployment, the initial clustering stages are the same as the urban deployment.

However, when the refinement stages start, only the following subroutines are used:

• SimpleReassignment
• Swap
• FullOptimisation
• HighDemandSimpleReassignment.

These are reused frequently throughout the code for different clustering requirements and are
explained below. All of the subroutines can move any locations in the rural deployment, since the
FullAccessNetworkBuild subroutine will not calculate ESAs with both a rural deployment and a
fibre ring deployment.

PassDirectToPillarClusterLevel

Location: Found in the Clustering module

Purpose: This subroutines edits the arrays used so that the second stage of the
clustering that occurs in the urban deployment is circumvented for the
rural deployment.

Pillar clusters are consolidated using ConsolidatePillars. This runs
exactly as specified in the urban deployment in section 2.3.1, except
that merges are stated to be possible only if the two pillar cluster
taken together would satisfy the (absolute) pillar capacity constraint
and distance constraint with their new pillar location.

The pillar locations are identified using the subroutine IdentifyPillar.

The subroutine TransferSmallCopperAreasToWireless is not used at
this stage in the code: see section 2.4.3.

2.4.2 Copper or wireless determination phase

Up until this point, the path traced by the rural deployment has been almost identical to the urban
deployment. The path then diverges into a subroutine called
CalculateWirelessAndSatelliteServedDemand in the WirelessAndSatellite module, which governs
the rest of the rural deployment.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 40

9995-203

The first step is to determine, on a cost basis, whether a location should be served by copper or
wireless technology (the ‘copper-wireless decision’). This is completed by the subroutine
ChooseRadioOrCopperCluster.

ChooseRadioOrCopperCluster

Location: Found in the WirelessAndSatellite module

Purpose: The pillar locations that have already been calculated are stored. The G–NAF co-ordinates
corresponding to each of the locations are recalled and then the locations are clustered
according to the wireless assumptions.

The decision then begins by assuming that all of the pillar locations are served by copper,
with everything else served by wireless.

As described in the main documentation, two deployment scenarios are investigated
(enumerated by the variable lComparison). Each of these deployment scenario checks through
each of the pillar clusters in turn twice (enumerated by the variable lIteration).

The value of lComparison and lIteration determine the copper capacity/distance constraints
used in the heart of the subroutine, as summarised in Table 2.2 and Table 2.3 below:

 lComparison =1 lComparison =2

lIteration=1 Minimum (or ‘critical’) capacity (~20 units of demand)

lIteration=2 Standard pillar capacity used in copper clustering

Table 2.2:

Copper capacity

constraints

employed

[Source:

Analysys]

 lComparison =1 lComparison =2

lIteration=1 Based on distance from pillar LPGS assumed in all cases,

Table 2.3:

Copper distance

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 41

9995-203

lIteration=2

The heart of the subroutine proceeds as follows and runs for each deployment scenario and
pass of the pillar locations:

• The first pillar cluster to be checked is always the RAU location.

• For the current pillar location, the wireless-fed point closest to that pillar is identified and
then the point in the copper cluster that is closest to this wireless-fed point is identified.

• The wireless-fed location is assigned to this copper cluster and the average cost per unit
demand are calculated for:

– the copper cluster
– the original wireless cluster.

• If the average copper cost is lower than the average wireless cost, then the pillar location
is re-calculated assuming that this location is now fed by copper.

• If the updated copper cluster is found to satisfy the distance constraint, then the wireless-
fed location becomes a copper-fed location permanently. The total costs of each cluster
are also updated.

Several clean-up processes then refine the outputs for each of the deployment scenarios. The
first checks whether a copper cluster that has survived the process is in fact surrounded by
another copper cluster. If so, then the two clusters are merged. Secondly, any clusters that are
smaller than the minimum capacity are converted to wireless. The copper and wireless cluster
costs are updated accordingly.

The deployment scenario that gives the lowest total cost is taken as the final output of the
algorithm. Finally, each location is provisionally stated in the output worksheet for the ESA as
being served by either copper or wireless based on this decision.

Having completed the copper-wireless decision, CalculateWirelessAndSatelliteServedDemand
checks whether the RAU is served by wireless or copper. If the former is true, but there exist other
locations served by copper, then the RAU is reset to be served by copper, to be consistent with the
scorched-node assumption.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 42

9995-203

2.4.3 Copper clustering phase

Having identified the subset of points that are said to be served by copper, these points are fed into
the AllClusteringMethods subroutine. This executes IdentifyRAU and DivisiveClustering as
described in section 2.4.1. However, when executing the PassDirectToPillarClusterLevel
subroutine, there is an extra stage that is completed at the end using the subroutine
TransferSmallCopperAreasToWireless.

TransferSmallCopperAreasToWireless

Location: Found in the WirelessAndSatellite module

Purpose: This subroutine is used after the copper-wireless decision and looks at
the subset of points designated as served by copper following their re-
clustering using the copper assumptions. If clusters are identified
which have less than the minimum capacity, then the points within
these clusters are stated to be served by wireless and the necessary
arrays are updated.

2.4.4 Copper pillar cluster spanning tree phase

As with the urban deployment, ConstructTreeFollowingClusterMainPointIdentification is then
used to derive minimum spanning trees within each of the pillar clusters. As stated previously, the
rural deployment does not use DP clusters. In the rural deployment, it is often attempting to create
a spanning tree of over 300 points, so this process can take much longer per cluster than in the
urban deployment. This begins with the subroutines GetMaxPointsInCluster and
SetupArraysForSpanningTree.

GetMaxPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Identifies the maximum number of points in a pillar cluster.

SetupArraysForSpanningTree

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Dimensions the key arrays for the minimum spanning tree process:

• glUnattachedPoint() – the list of locations in the cluster that are
unattached at any point in the algorithm

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 43

9995-203

• glAttachedPoints() – the list of locations in the cluster that are
attached at any point in the algorithm

• glVertexRoute() – for any location, the location that it passes
through in order to get back to the node location

• gdDistanceMatrix() – stores the distance between any two points
in the cluster

• gobjEdges() – stores the vertices and lengths associated with each
edge in the spanning tree.

Following these two subroutines, each cluster is then treated in turn. The following are used in
order to create and store the minimum spanning trees:

• SetupPointsInCluster – identifies the central point in the cluster
• SetupGdDistanceMatrix – calculates the required distances
• ConstructTree – constructs the minimum spanning tree for the cluster
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node
• GetTotalDistance – calculates the total trench within the tree
• GetRuralTaperedSheathLength/GetRuralNonTaperedSheathLength – calculates the total

copper sheath within the tree depending on the nature of the cabling network deployed
• GetRuralTaperedCopperLength/GetRuralNonTaperedCopperLength – calculates the total

copper pair length within the tree depending on the nature of the cabling network deployed
• WriteCopperNetworkResults – stores the list of edges in the spanning tree on the output

worksheet for the ESA.

SetupPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Calculates the number of points in the cluster.
• Identifies the pillar location for the cluster and states this location

as the central point cp.

SetupGdDistanceMatrix

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For the rural deployment, calculates the p-function distance between
any two pairs of points in the pillar cluster and stores these distances
in the array gdDistanceMatrix().

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 44

9995-203

ConstructTree

In order to derive the spanning tree for the cluster, the algorithm begins with the central point (cp)
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached.
Locations are then added to the tree incrementally and the lists of attached and unattached
locations are updated.

For each incremental addition, the algorithm cycles through each pair of attached and unattached
points and calculates the average cost per line of the whole tree were the two points linked together
by a trench and a cable. This average cost is determined by AverageCostPerLine.

► AverageCostPerLine

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For the rural deployment, it determines:

• the extra capacity and the copper pair requirements (c) needed to
serve the unattached point, depending on the nature of the cabling
network within the pillar cluster:

– for tapered,
glCablingForRuralDemandIncUtilisation() is used,
which was populated using inputs from the ‘Inputs’
worksheet and accounts for the cable utilisation
assumed in the network

– for non-tapered, GetNonTaperedCableSize and
GetNonTaperedSheath are used

• the length of extra trench distance (d) to link the attached and
unattached point.

The cost of the new link is then calculated using the expression

k1*d + k2*c + k3*d*c + k4*√c

and calculates the new cost per unit of demand for the entire tree.

For each unattached point, the edge to an attached point that gives the lowest new average cost per
line is stored in the array objEdgeList() using AddToEdgeList.

► AddToEdgeList

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Having identified the best edge by which to join a particular point to
the existing tree, this subroutine stores the vertices of this edge and its
average cost per unit of demand.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 45

9995-203

This is repeated for every unattached point. The edge in objEdgeList() that gives the lowest new
average cost per line is then linked to the tree using AddCheapestEdgeInListToObjEdges.

► AddCheapestEdgeInListToObjEdges

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Adds the best link in objEdgeList(), in terms of average cost per
line, to the list of edges for the minimum spanning tree.

• Updates the array glVertexRoute() for this new edge in the tree,
defined by:

 glVertexRoute(unattached location on new edge) = attached
locations on new edge

• Updates the total copper length required to link the location all
the way back to the node.

The number of unattached points is reduced by 1 and the lists of attached and unattached points
updated using IdentifyAttachedAndUnattachedPoints, which can be found in the
ModifiedPrimSpanningTree module.

The loop in ConstructTree continues until all locations in the cluster have been attached to the
cluster node.

StoreRoutes

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For each point P in the cluster, stores the point Q that it passes back
through in order to reach the cluster node, with the array defined as:

glRouteToCentre(P)=Q

GetTotalDistance

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total trench in the spanning tree for a pillar, by cycling
through all points P in the cluster and calculating the distance
between P and the point that it passes through on it way back to the

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 46

9995-203

pillar.

GetRuralTaperedSheathLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total cable sheath in the spanning tree assuming that
the cabling is tapered. For each point P it calculates the distance
between P and its predecessor back to the pillar.

The number of sheaths needed for the cabling are determined on the
basis of the downstream capacity at that point, using the array
glCablingForRuralDemandIncUtilisation(). This accounts for the
assumed utilisation of cable.

The number of sheaths is then multiplied by the length of the link
between P and its predecessor and this is aggregated onto the total.

GetRuralNonTaperedSheathLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total cable sheath in the spanning tree assuming that
the cabling is non-tapered. For each point P it calculates the distance
between P and its predecessor back to the pillar.

The number of sheaths needed for the cabling are determined on the
basis of the downstream capacity at that point, using the function
GetNonTaperedSheath, which is explained below. This accounts for
the assumed utilisation of cable.

The number of sheaths is then multiplied by the length of the link
between P and its predecessor and this is aggregated onto the total.

GetRuralTaperedCopperLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total copper pair length in the spanning tree assuming
that the cabling is tapered. For each point P, it calculates the distance
between P and its predecessor back to the pillar.

The number of copper pairs needed for the cabling are determined on

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 47

9995-203

the basis of the downstream capacity at that point, using the array
glCablingForRuralDemandIncUtilisation(). This accounts for the
assumed utilisation of cable.

The number of copper pairs is then multiplied by the length of the
link between P and its predecessor and this is aggregated onto the
total.

In addition, the size of the sheath deployed is derived and the total
length required of that size is aggregated into the array
gdDistnNetworkSheathBySize(), which stores total length of sheath
by cable size.

GetRuralNonTaperedCopperLength

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Calculates the total cable pair length in the spanning tree assuming
that the cabling is non-tapered. For each point P, it calculates the
distance between P and its predecessor back to the pillar.

It determines the number of pairs needed for the cabling on the basis
of the downstream capacity at that point, using the functions
GetNonTaperedSheath and GetNonTaperedCableSize, which are
explained below. These account for the assumed utilisation of cable.

The number of copper pairs is then multiplied by the length of the
link between P and its predecessor and this is aggregated onto the
total.

In addition, the size of the sheath deployed is derived and the total
length required of that size is aggregated into the array
gdDistnNetworkSheathBySize(), which stores total length of sheath
by cable size.

► GetNonTaperedSheath

Location: Found in the ClusterToCluster module

Purpose: Given a capacity in terms of units of demand, it determines the cable
size required in a non-tapered network. This accounts for the assumed
level of cable utilisation in the distribution network.

Non-tapered cabling is assumed to come in only two types: a main
cable size and a minor cable size. If the capacity required, having

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 48

9995-203

accounted for utilisation, is smaller than the minor cable capacity then
the minor cable is used. Otherwise, the necessary multiples of the
main cable is used.

If the main cable is used, then the number of sheaths is calculated by
rounding up the ratio of the capacity required and the main cable size.

If the minor cable size is assumed to be zero, then the main cable size
is always used. This is a default assumption.

► GetNonTaperedCableSize

Location: Found in the ClusterToCluster module

Purpose: Given a capacity in terms of units of demand, it determines the cable
size required in a non-tapered network. This accounts for the assumed
level of cable utilisation in the distribution network.

Non-tapered cabling is assumed to come in only two types: a main
cable size and a minor cable size. If the capacity required, having
accounted for utilisation, is smaller than the minor cable capacity then
the minor cable is used. Otherwise, the main cable is used.

WriteCopperNetworkResults

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Writes the points and their co-ordinates in the output worksheet
for the ESA (in rows BF–BM) that define every edge in the
spanning trees for the pillar clusters.

• Determines how many extra pits are required along these edges.

• Writes the copper locations, their co-ordinates and their parent
pillar in the output worksheet for the ESA (in rows BX–CD).

2.4.5 Copper cluster connection phase

This phase is run through the ConnectClusters subroutine, which is found in the ClusterToCluster
module.

After this revision, we then join up all the pillar locations in the ESA through the subroutine
RunAtRuralPillarClusterLevel, which also lies in ClusterToCluster module. This subroutine is
only used if there is more than one pillar cluster.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 49

9995-203

RunAtRuralPillarClusterLevel executes several subroutines:

• SetUpClusterPairIndex
• IndexPointsWithinPillarCluster
• SortPairsOfPoints
• RoutePointsForRuralPillarCluster
• ApplyDijkstra (contained within RoutePointsForCluster).

SetUpClusterPairIndex

Location: Found in the ClusterToCluster module

Purpose: Indexes pairs of pillars in an ESA so that each unordered pair occurs
exactly once: use triangular numbers: e.g. for four pillars, (P1,P2) →
1, (P1,P3) → 2, (P1,P4) → 3, (P2,P3) → 4, (P2,P4) → 5, (P3,P4) →
6

IndexPointsWithinPillarCluster

Location: Found in the ClusterToCluster module

Purpose: Creates a new indexing PointIndex() and its inverse
InversePointIndex() that are effectively identity mappings in this
case: this is included for the process to have a consistent structure
with the urban equivalents.

Following IndexClusterWithinPillarCluster, the pillar that is the RAU location is identified.

SortPairsOfPoints

Location: Found in the ClusterToCluster module

Purpose: • For each pair of pillars in the ESA:
– calculate how many unique pairs of points there are

which have one point from each pillar cluster
– explicitly identify these pairs of points and, for each

pair, calculate the distance between the two points
using the p-function

– sort the pairs of points in order of this distance, with
the closest pair of points listed first.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 50

9995-203

RoutePointsForPillarCluster

Location: Found in the ClusterToCluster module

Purpose: • Finds the least proxy cost route for connections between pillar
clusters and then connections to the RAU.

• This assumes that, if the route for a pillar location back to the
RAU goes through other pillar clusters, then it passes through
their pillar locations.

• It also assumed that each pillar–RAU link is a discrete cable.

• The proxy cost function when costing up linkages with new
trench assume additional trench cost [uses a cost multiplier of M1
= k1 * + (k3 * pillar–RAU cabling capacity CD) + (k4 * √CD), to
multiply by the new trench length LN].

• The proxy cost function when costing up linkages through
existing trenches assume no additional trench cost [uses a cost
multiplier of M2 = (k3 * pillar–RAU cabling capacity CD) + (k4 *
√CD), to multiply by the existing trench length LE].

• When costing the links between any two pillar locations, for each
unique pair of pillar clusters:

– identify the pair of points (with 1 from each pillar
cluster) which are the closest (a distance d apart,
calculated with the p–function)

– calculate the sum of their distances back to their
respective pillars, DT.

• The proxy cost of linking the two pillars clusters together through
these points is then assumed to be (M1 * d) + (M2 * DT).

• For comparing the costs of linking two pillars, assuming a
constant pillar–RAU cabling capacity means jointing proxy costs
will be the same for all pillar cluster pairs, so it is not included in
our sum (so k2 is not included above).

• For each pair of pillar clusters, identify the pair of points which
give the lowest linking proxy cost.

• Add on the jointing cost for each of these best linkages.

• This gives us a fully meshed set of linkages between all pillars.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 51

9995-203

• These linkages are stored in the array C2CEdgePillar().

ApplyDijkstraForRuralPillarClusters (within RoutePointsForRuralPillarCluster).

Location: Found in the ClusterToCluster module

Purpose: • Apply the Dijkstra algorithm to derive a least proxy cost route
between any pillar and the RAU, using these linkages.

• Assume, provisionally, that all pillars are connected directly to
the RAU.

• Start with the RAU.

• For every other pillar, identify from storage the requirements for
linking it to the RAU:

– extra trench
– cost of linking the two pillars
– cabling cost of linking the two pillars (i.e. excluding

trench cost)
– (effectively) total sheath length between them.

• Then, execute the following loop whilst there are still
unconnected pillars.

• For a given (connected) pillar i (with i starting off as the RAU),
look through the remaining unconnected pillars and decide which
pillar (j) is the most cost effective to link directly to pillar i.

• Then, for each unconnected pillar k, test to see if there is a
cheaper proxy cost in linking it back to the RAU by going
through i, or via the current provisional path, by:

– calculating all the extra jointing costs of going
through pillar i (possibly via other pillars) back to the
RAU, rather than its existing path

– if ([total cabling cost of linking k to RAU via i]
+[extra jointing costs of linking k to RAU via i] + [the
cost of linking k to i]) < cost of linking k to the RAU
directly, then set the link for k to be via pillar i.

• Set i to be the pillar that was just connected (j) and return to the
start of the loop.

• When all pillars have been connected, calculate:

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 52

9995-203

– total extra trench required to join all pillars to the
RAU

– incremental copper sheath required to link the pillar
location back to the RAU, for each pillar cluster

– for each pillar, the previous pillar on its way back to
the RAU, stored in glPreviousPillarCentre().

As the last step in ConnectCluster, the subroutine CalculateDuctByType is used to calculate the
duct requirements within each pillar cluster.

CalculateDuctByType

Location: Found in the CalculateDuct module

Purpose: Identifies the number of sheaths by cabling type within each link in
the pillar clusters, as preparation for the derivation of the number of
ducts within each link in the subroutine WriteDuctOutputs.

If the cabling within the pillar cluster is assumed to be tapered, then 1
sheath is assumed to be required within each link.

If the cabling within the pillar cluster is assumed to be non-tapered,
then the sheath requirements are derived with GetNonTaperedSheath.

For each link in the pillar cluster networks, the number of sheaths
required is calculated and stored as intra-pillar (copper) duct.

Back in the subroutine CalculateWirelessAndSatelliteServedDemand, the number of branching kits
required in the network is calculated and then the function GetRuralJointingCosts is used to
calculate the jointing required in the network.

GetRuralJointingCosts

Location: Found in the WirelessAndSatellite module

Purpose: Calculates the jointing requirements within the pillar clusters. For
distance-related jointing, we assume a maximum distance that cable
can be pulled within the distribution network without a full joint.

Firstly, for each location, it determines the number of copper pairs

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 53

9995-203

that will be heading back towards the pillar at that location, having
accounted for the utilisation of the cable. For the tapered case, this
uses glCablingForRuralDemandIncUtilisation. For the non-tapered
case, this uses GetNonTaperedCableSize and GetNonTaperedSheath.

The demand-related jointing is calculated first on an edge-by-edge
basis. For the non-tapered case, this is taken to be the demand at that
point. For the tapered case, it is taken to be the demand at that point if
it is an extreme point. Otherwise, it is taken to be the total demand
downstream of that point. If the edge within the link exceeds the
maximum pulling distance in length, then we include additional
jointing as required within the edge.

The distance-related jointing is only calculated explicitly for the non-
tapered case. For each location, its predecessor back to the pillar is
calculated. The cable distance of both locations back to the pillar are
known. If a multiple of the maximum pulling distance is passed
within the link, then a full joint is assumed to occur on the cable at
the location nearest to the pillar.

Back in the subroutine CalculateWirelessAndSatelliteServedDemand, the demand fed by fibre in
each pillar cluster is calculated using the subroutine CalculateFibreUnitsOfDemand.

CalculateFibreUnitsOfDemand

Location: Found in the Clustering module

Purpose: Aggregates fibre demand on a pillar cluster basis for the purpose of
printing the outputs for this ESA. For each fibre-fed location, one unit
of demand is assumed to be still fed by copper: the remainder by
copper.

2.4.6 Backhaul determination phase

Having calculated the copper and fibre networks for a rural deployment for the ESA, the backhaul
requirements for each access node are then derived.

For example, pillars may be too far from the RAU to be linked by copper, in which case a LPGS is
installed and a backhaul link replaces the copper link. This is accomplished by the subroutine
DetermineBackhaulForCopperServedAreas.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 54

9995-203

DetermineBackhaulForCopperServedAreas

Location: Found in the WirelessAndSatellite module

Purpose: First of all, this subroutine analyses the cable between the copper
nodes and the RAU, in order to remove double-counted cables. This
is accomplished using the subroutine
RemoveRuralDoubleBackMainCable, as described below.

Secondly, it identifies whether a copper node should in fact be an
LPGS and, if so, whether it should have fibre, wireless or even
satellite backhaul. It runs through each pillar in turn:

• The RAU cannot be an LPGS, so it is labelled as a RAU.

• For all other pillars, the maximum loop length across all the
locations in the pillar cluster (from FDP to RAU) is calculated.

• If this distance is less than a maximum threshold for using an
LPGS (gdMaxCableDistanceBeforeUsingLPGS), then a pillar is
still used and the jointing required between the pillar and the
RAU is derived and stored in gdPillarRAUJointing().

• If this distance is higher than the threshold, then an LPGS is
required. The type of backhaul link is then determined as follows:

• If the network is either including all pillars in a fibre ring, or is
linking all pillars with fibre-fed locations into fibre rings and this
pillar has fibre-fed locations, then it will already have a backhaul
link via the fibre ring. So, we remove the pillar–RAU link,
provided that it does not form part of the fibre ring. The rural
deployment should never use fibre rings, so this is irrelevant for
the rural case.

• Otherwise, the cost of linking the LPGS by a fibre and a wireless
link is calculated. The wireless cost includes the cost of relay
stations, which are derived by using
DeriveWirelessLinkQuantities, which is explained below.

• If the fibre cost is the cheaper option, then the pillar–RAU copper
link is replaced with a fibre cable.

• If wireless is the cheaper option, but needs more than a certain
number of relay stations (glMaxNumRelaysInWiBackhaul), then
the copper link is replaced with a satellite link.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 55

9995-203

• Otherwise, the incremental trench and copper link is removed and
the LPGS is assumed to be served by a wireless link. The number
of relay stations required is also stored.

• Having completed this determination, the nature of each location
is then determined using DetermineLocationType, as described
below.

► RemoveRuralDoubleBackMainCable

Location: Found in the PillarClusterToPillarClustermodule

Purpose: For each pillar cluster in turn, this subroutine considers the route that
the cable takes from the pillar back to the RAU. Specifically,:

• counts the number of times that this cable passes through each
link in the trench network

• reduces this count where it is more than 1 to remove instances
where the cable doubles back on itself

• adjusts the recorded length of the cable for the pillar in
gdSheathLengthToConnectPillarClusters() accordingly

► DeriveWirelessLinkQuantities

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Given the length of a wireless link, this derives how many relay
stations are required on the link, by dividing the link distance by the
assumed maximum distance of a wireless link without a relay station
(~30km, as defined in the ‘Inputs’ worksheet of the Access CODE
workbook) and then rounding up.

► DetermineLocationType

Location: Found in the OutputResults module

Purpose: For the rural deployment, this subroutine first identifies all copper
points as DPs and all wireless locations as FDPs. It then overwrites
the main node locations, namely the RAU, the pillars and LPGS.

The duct required to link up the pillars and LPGS to the RAU is calculated using the subroutine
CalculateDuctBetweenRuralPillars.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 56

9995-203

CalculateDuctBetweenRuralPillars

Location: Found in the CalculateDuct module

Purpose: For the rural deployment, for each pillar/LPGS, this subroutine
identifies the full route taken back to the RAU and inserts a duct in
the relevant trenches. Ducts for pillar–RAU and LPGS–RAU links
are recorded separately.

2.4.7 Fibre determination phase

Having completed the trench network for the copper network, the algorithm then seeks to overlay
a fibre network to serve the locations of high demand. For a rural deployment, this can only be
done using point-to-point links. This is handled by the subroutine
LinkFibrePointsDirectlyToPillar, which is found in the BuildFibreRing module.

LinkFibrePointsDirectlyToPillar

Location: Found in the BuildFibreRing module

Purpose: This calculates the fibre sheath and length requirements for joining
each fibre-fed location back to its parent RAU via its parent DP and
pillar. This uses the path determined by the nominal unit of demand
assigned to each fibre-served location in the copper network.

This function does not need incremental trench, since the existing
trench network is assumed to be used as the path back to the RAU.

For the rural deployment:

• Fibre-fed locations are flagged in the array bolPointFedByFibre().

• The fibre sheath needed to join each fibre-fed location back to its
parent RAU is calculated, by using the same path followed by the
copper network.

• The fibre length needed to join each fibre-fed location back to its
parent RAU is calculated for each pillar cluster, by multiplying
the total FDP–DP, DP–pillar fibre sheath lengths by their
respective assumed fibre cable sizes.

• The pillar–RAU fibre sheath length is assumed to be the same as
that for the analogous connection in the copper network.

• The pillar–RAU fibre length is assumed to be the fibre sheath

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 57

9995-203

length multiplied by the assumed fibre cable size in the DP–pillar
part of the network.

• A discrete cable is assumed for each fibre-fed location all the way
back to the RAU (point-to-point architecture).

• The amount of fibre-specific duct required is calculated using
CalculateFibreDuctByType for links back to the pillar and
CalculateDuctsForFibreBackFromPillar for links from the pillar
back to the RAU.

► CalculateFibreDuctByType

Location: Found in the CalculateDuct module

Purpose: This calculates the duct required for the entire route for each fibre
cable from the fibre-fed FDPs back to the pillar.

► CalculateDuctsForFibreBackFromPillar

Location: Found in the CalculateDuct module

Purpose: Fibre rings can never be used in the rural deployment, so this
calculates the duct required for a point-to-point fibre link from each
fibre-fed FDP, starting from the parent pillar and going back to the
RAU.

2.4.8 Copper result storage phase

The remaining outputs of the copper network asset volumes are printed to the output worksheet for
the ESA by the subroutine OutputTheCopperResults.

OutputTheCopperResults

Location: Found in the OutputResults module

Purpose: This prints the remaining network volumes to the output worksheet
for the ESA in the relevant Access DATA workbook.

Specifically, the subroutine:

• calculates the average loop length for each pillar cluster
• prints the network volumes for the cluster containing the RAU
• prints the aggregated volumes for the ESA, including the trench

between pillars and the RAU and the number of relay stations

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 58

9995-203

• prints the network volumes for every other pillar cluster
• prints the pillar cluster indices for each location, via

WriteCopperClusterResults, as explained below
• prints the edges in the spanning trees at the pillar–RAU level of

the network, using the subroutine
WriteConnectRuralClustersResults, as explained below

• prints the duct requirements for each link in the trench network,
using WriteDuctOutputs, as explained below

• estimates the cable lengths by cable size, using the subroutine
CalculateTotalSheathLengthByCableSize, as explained below.

► WriteCopperClusterResults

Location: Found in the Clustering module

Purpose: Prints the pillar cluster alongside each copper-fed location.

► WriteConnectRuralClustersResults

Location: Found in the PillarClusterToPillarCluster module

Purpose: Prints the incremental trench links required to join the pillars and
LPGS with fibre backhaul to the RAU. Also calculates the number of
extra manholes needed along these links.

► WriteDuctOutputs

Location: Found in the CalculateDuct module

Purpose: For each link in the trench network, the number of ducts required by
type are calculated, determined by how many cables of each type
there are passing through the link and the capacity of each type of
duct.

The number of ducts that are provisioned (based on the allowed
multiples) is also determined for each link. The length of each link,
using either crow-flies or p-function, is also derived.

Finally, the type of pit required at each DP location is also
determined.

► CalculateTotalSheathLengthByCableSize

Location: Found in the OutputResults module

Purpose: For the rural deployment, the sheath length by cable size is estimated
slightly differently depending on whether the network is tapered or

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 59

9995-203

non-tapered.

In the tapered case, the sheath requirements for each point and its
predecessor back to the pillar are calculated individually using
glCablingForRuralDemandIncUtilisation and then aggregated by
cable size.

In the non-tapered case, the sheath requirements for each point and its
predecessor back to the pillar are calculated individually using
GetNonTaperedCableSize and GetNonTaperedSheath and then
aggregated by cable size.

The sheath by cable size is then printed onto the output worksheet for
the ESA.

2.4.9 Wireless clustering phase

Having completed the copper and fibre deployments, a wireless phase is undertaken by the
subroutine CalculateWirelessandSatelliteServedDemand if either

• There are points that have been designated as being served by wireless.

• There are LPGS that are served by wireless backhaul, which must be linked back to the RAU
as part of a wireless backhaul network.

For each wireless-fed location, the co-ordinates of its corresponding location from the G–NAF are
restored and these co-ordinates are used to cluster these locations using the wireless assumptions
and the subroutine DivisiveClustering in the Clustering module.

2.4.10 Satellite determination phase

When the wireless locations have been clustered, CalculateWirelessandSatelliteServedDemand
calculates the cost of serving each wireless cluster by wireless or by satellite.

The wireless cost of a cluster is given by:

Cost of the wireless BTS + (Number of locations in cluster × Cost of a wireless CPE)

The satellite cost of a cluster is given by:

(Number of locations in cluster × Cost of connecting a location with satellite)

If a cluster is found to have a higher wireless cost, then it is assumed to be served by satellite, so
the BTS is not needed for the consideration of the wireless backhaul network.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 60

9995-203

2.4.11 Wireless backhaul determination phase

As stated above, a wireless backhaul network is required if there are BTS and/or LPGS with
wireless backhaul that need to be connected back to the RAU. For each cluster served by a
wireless BTS, the demand-weighted centre is calculated. The data for the wireless clusters is then
stored and a set of points is created consisting of (in order):

• the RAU
• all LPGS with wireless backhaul
• wireless BTS.

The subroutine ConstructTreeForWirelessBTS is then used to create a minimum spanning tree of
these points. This can be found in the ModifiedPrimSpanningTree module and begins with the
subroutines GetMaxPointsInCluster and SetupArraysForSpanningTree.

GetMaxPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Identifies the number of nodes in the wireless backhaul network.

SetupArraysForSpanningTree

Location: Found in the ModifiedPrimSpanningTree module

Purpose: Dimensions the key arrays for the minimum spanning tree process:

• glUnattachedPoint() – the list of locations in the cluster that are
unattached at any point in the algorithm

• glAttachedPoints() – the list of locations in the cluster that are
attached at any point in the algorithm

• glVertexRoute() – for any location, the location that it passes
through in order to get back to the node location

• gdDistanceMatrix() – stores the distance between any two points
in the cluster: here, it is calculated to be the crow-flies distance

• gobjEdges() – stores the vertices and lengths associated with each
edge in the spanning tree.

Following these two subroutines, each cluster is then treated in turn. The following subroutines are
used in order to create and store the minimum spanning trees:

• SetupPointsInCluster – identifies the central point in the cluster
• ConstructTree – constructs the minimum spanning tree for the cluster
• StoreRoutes – for each point P, identifies the point P passes through to get back to the node

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 61

9995-203

• WriteWirelessNetworkResults – stores the list of edges in the spanning tree on the output
worksheet for the ESA.

SetupPointsInCluster

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • In this case, we are creating a single backhaul network, so all the
points we are considering are in the cluster.

• The main node has been set up to be the RAU, which is identified
and stated to be the central point cp.

ConstructTree

In order to derive the spanning tree for the cluster, the algorithm begins with the central point
identified in SetupPointsInCluster. All other locations in the cluster are assumed to be unattached.
Locations are then added to the tree incrementally and the lists of attached and unattached
locations are updated.

For each incremental addition, the algorithm cycles through each pair of attached and unattached
points and calculates the average cost per line of the whole tree were the two points linked together
by a trench and a cable. This average cost is determined by AverageCostPerWirelessLink.

► AverageCostPerWirelessLink

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For the wireless backhaul network, it determines:

• The extra backhaul capacity (c) required to serve the unattached
point, using the subroutine GetBackHaulMultiplierNeeded, in the
WirelessAndSatellite module.

• The crow-flies distance (d) between the attached and unattached
point.

• The number of relay stations (n) required, derived using
DeriveWirelessLinkQuantities.

The cost of the new link is then calculated using the expression:

k1*d + k2*c + k3*n

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 62

9995-203

and calculates the new cost per unit of demand for the entire tree.

For each unattached point, the edge to an attached point that gives the lowest new average cost per
line is stored in the array objEdgeList() using AddToEdgeList, which can be found in the
ModifiedPrimSpanningTree module.

This is repeated for every unattached point. The edge in objEdgeList() that gives the lowest new
average cost per line is then linked to the tree using
AddCheapestWirelessLinkInLinkListToObjEdges.

► AddCheapestWirelessLinkInLinkListToObjEdges

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Adds the best link in objEdgeList(), in terms of average cost per
unit of demand, to the list of edges for the minimum spanning
tree.

• Updates the array glVertexRoute() for this new edge in the tree,
defined by:

 glVertexRoute(unattached location on new edge) = attached
locations on new edge

• Updates the total capacity and costs required to link the location
all the way back to the RAU.

The number of unattached points is reduced by 1 and the lists of attached and unattached points
updated using IdentifyAttachedAndUnattachedPoints, which can be found in the
ModifiedPrimSpanningTree module.

The loop in ConstructTree continues until all locations in the cluster have been attached to the
cluster node.

StoreRoutes

Location: Found in the ModifiedPrimSpanningTree module

Purpose: For each point P in the cluster, stores the point Q that it passes back
through in order to reach the cluster node, with the array defined as

glRouteToCentre(P)=Q

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 63

9995-203

WriteNetworkResults

Location: Found in the ModifiedPrimSpanningTree module

Purpose: • Writes the location co-ordinates in the output worksheet for the
ESA (in rows BF–BM) that define every edge in the spanning
trees for the wireless backhaul network.

• Classifies each link as either wireless LPGS–BTS, BTS–BTS,
BTS–RAU, BTS–wireless LPGS, wireless LPGS–
wireless LPGS.

For each edge in the wireless backhaul network, the number of relay stations is calculated using
DeriveWirelessLinkQuantities and aggregated. Finally, all the wireless locations are then restored.

2.4.12 Wireless and satellite result storage phase

Having derived the wireless clusters and backhaul network, the network asset volumes for these
clusters are printed to the output worksheet for the ESA by the subroutine
OutputTheWirelessAndSatelliteResults.

OutputTheWirelessAndSatelliteResults

Location: Found in the OutputResults module

Purpose: This prints the remaining network volumes to the output worksheet
for the ESA in the relevant Access DATA workbook.

Specifically, the subroutine:

• prints the number of wireless relay stations required

• prints out network volumes for the RAU, which can depend on
whether the ESA has copper deployed or not

• prints out network volumes for wireless clusters using
OutputAWirelessRow

• prints out network volumes for satellite clusters using
OutputASatelliteRow

• prints the cluster indices for each location in a wireless or satellite

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 64

9995-203

cluster using WriteWirelessClustersResults.

► WriteWirelessClustersResults

Location: Found in the OutputResults module

Purpose: For each location in a wireless cluster, a cluster index is printed.
These are enumerated so that an ESA containing both copper,
wireless and satellite clusters will have a unique index for each
cluster.

Back in the CalculateWirelessAndSatelliteServedDemand subroutine, each location is then
identified as being served by copper , wireless or satellite. The original set of all points are then
restored to the main array.

2.4.13 Assumption storage phase

The assumptions used within the calculation are printed onto the output worksheet for the ESA,
using the subroutines RecordAssumptions.

RecordAssumptions

Location: Found in the CommonCode module

Purpose: This prints all of the assumptions used in the calculation of access
network asset volumes.

For a rural deployment, it prints:

• capacity and distance constraints for the nodes used in the
network

• technical constraints for the copper jointing
• cables used in the non-tapered distribution network (if applicable)
• coefficients for the p–function used
• coefficients for the proxy cost functions
• cost assumptions used (in the rural case for the fibre and wireless

backhaul cost comparisons for LPGS backhaul, the copper and
wireless cost-based decision and the satellite decision).

Finally, in order to reduce congestion in the computer’s memory, the subroutine EraseArrays
(found in the MainMacros modules) uses the Erase statement to destroy global arrays populated
separately for each ESA, releasing the allocated memory.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 65

9995-203

3 Script for the core network algorithms

3.1 Introduction

Visual Basic code has been developed, using the compiler in Excel, for the purpose of determining
the efficient backhaul routes, using a spur and ring topology, from the local exchanges (LEs) to the
local access switch (LAS) (or their NGN equivalents).

This chapter outlines the structure of the underlying code, which can be located in the Excel
workbook LE_LAS_ring.xls.

The code is divided into two main programs:

• Find PoCs – for each LAS area, this part of the code identifies which LEs should be
designated as points of confluence (PoCs); and for all the other LEs, the parent PoC to which
they should join.

• RunTSP – this code forms the PoC rings within each LAS area.

These programs are described in detail in sections 3.2 and 3.3 respectively.

3.2 Find PoCs

Backhaul from the LE nodes (AT1 nodes in NGN) are aggregated at PoCs prior to being
backhauled to the parent LAS (regional node in NGN).

The following conditions govern whether an LE/AT1 may be designated as a PoC:

• If the demand at the LE/AT1 node is greater than a defined threshold limit, then that LE/AT1
node is designated as a PoC.

• For the other nodes, if the demand of a clustered group of LE/AT1 nodes is greater than a
defined threshold limit, then the LE/AT1 node at the line-weighted centre of the cluster is
designated as the PoC.

Having determined the appropriate PoC locations, the algorithm calculates the trench and fibre
distance to join the LE/AT1 nodes to the appropriate PoC – the clustering process identifies the
parent PoC to each LE/AT1 node. For each LE, this code requires the following data inputs (sorted
by ‘Parent LAS’ then ‘Distance to parent LAS’):

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 66

9995-203

Input required Description

LE ID An identifier for the local exchange

Parent LAS An identifier for the LAS area

Distance to parent LAS The straight-line distance from the LE to its corresponding LAS

SIOs at LE The number of services in operation at the LE

Latitude Latitude coordinate of the LE/AT1 node

Longitude Longitude coordinate of the LE/AT1 node

Table 3.1: Data inputs required by the ‘Find PoCs’ algorithm [Source: Analysys]

In addition, the algorithm requires the following parameters to be defined:

Parameter Description

LEs.Per.POC The maximum number of LEs that may be attached to a PoC

SIOs.For.POC The SIO threshold of a PoC – above which an LE is automatically assigned to be
a PoC by itself

Trench.Cost The cost per metre of digging a trench

Fibre.Cost The cost per metre of deploying the fibre

Table 3.2: Parameters required by the ‘Find PoCs’ algorithm [Source: Analysys]

Using these inputs, the ‘Find POCs’ algorithm runs through the following subroutines:

• ClusterToPoCs
• Setup_Output_Sheet
• ReadInputParameters
• ReadInALAS
• Write_GPOC_dis_to_PoC
• Calc_Distance_Matrix
• RunThisLAS
• Identify_PoCs
• Cal_weighted_centre
• Prepare_and_run_spanning_tree
• WriteOutresults.

These subroutines are described in detail in the following subsections.

3.2.1 ClusterToPOCs

Location: Found in the ClusterToPOCs module

Purpose: This is the entry point and skeletal part of the ‘Find POCs’ code. It

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 67

9995-203

calls the following routines:

• Setup_Output_Sheet – prepares the output sheet

• ReadInputParameters – reads in the input parameters
(LEs.Per.POC and SIOs.For.POC)

Then it loops through each LAS calling the following routines:

• ReadINALAS – reads in the input data for the LAS

• write_GPOC__dist_to_PoC – for LEs that are PoCs by
themselves (henceforth referred to as GPoCs), we can write out
the distance to the PoC as 0

• Calc_Distance_Matrix – calculates the distances between every
pair of LEs within the LAS area

• RunThisLAS – the main clustering algorithm within the code.
Clusters the LEs into PoC areas

• Identify_POCs – for each PoC area, identifies the LE nearest the
centre of the cluster to use as the PoC

• prepare_and_run_spanning_tree – produces the minimum
spanning tree for each PoC cluster. That is, identify what
trenches need to be dug in order to attach each LE to its PoC

• WriteOutResults – writes out the results of the clustering and
spanning tree

3.2.2 Setup_Output_Sheet

Location: Found in the ClusterToPOCs module

Purpose: This subroutine clears all the cells in the output range

3.2.3 ReadInputParameters

Location: Found in the ClusterToPOCs module

Purpose: This subroutine reads in the input parameters LEs.Per.POC and
SIOs.For.POC

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 68

9995-203

3.2.4 ReadInALAS

Location: Found in the ClusterToPOCs module

Purpose: This subroutine runs through the data ranges and continues while
the Parent LAS string is the same as the previous line. The first line
it comes across is the LAS (assuming the data is sorted by distance
to LAS). Then, if it is an LAS or if the SIOs.For.POC condition is
met, it makes the LE into a GPoC (a PoC by itself with no other LEs
in the PoC area). If this is the case, then we assign all the input data
to an objGPOCData object. If it is not the case, then we assign the
input data to an objInputData object.

3.2.5 write_GPOC__dist_to_PoC

Location: Found in the Spanning Tree module

Purpose: For each of the GPoCs identified in the ReadInALAS subroutine,
this subroutine writes out the distance from the LE to the PoC to be
0 (since the LE is the PoC in these cases).

3.2.6 Calc_Distance_Matrix

Location: Found in the ClusterToPOCs module

Purpose: Calculates the straight-line distances between every pair of LEs
within the LAS area. The calculation takes account of the Earth’s
curvature.

3.2.7 RunThisLAS

Location: Found in the ClusterToPOCs module

Purpose: This subroutine sets up the global variable glNumPoints, which
represents the number of points that need clustering. It then calls
Divisive_clustering, which performs the clustering of LEs into
PoCs. For a description of the algorithm, see DivisiveClustering and
all of its associated routines in section 2.3.1.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 69

9995-203

3.2.8 Identify_POCs

Location: Found in the Clustering module

Purpose: For each cluster that has been identified (for reference, there are
gNumChildClusters identified), this subroutine calls the function
cal_weighted_centre, which calculates the centre of the cluster. The
subroutine then loops through each LE in the cluster and identifies
the LE that is nearest the centre. That identified LE is designated as
the PoC. The algorithm then assigns the global variable
glPOCPoints(lCluster) to point to that LE.

3.2.9 cal_weighted_centre

Location: Found in the Clustering module

Purpose: This subroutine calculates the weighted centre of a cluster of points.
In the algorithm, all of the points are weighted equally (the variable
dCap).

3.2.10 prepare_and_run_spanning_tree

Location: Found in the SpanningTree module

Purpose: For each PoC cluster of LEs, this subroutine sets up the data into the
format required to run the minimum spanning tree algorithm. It then
calls the algorithm construct_tree, which constructs the minimum
spanning tree for that PoC cluster. That is, it identifies the trenches
that need to be dug to join each LE to its PoC. For a description of
the algorithm see the ConstructTree algorithm in section 2.3.2. In
summary, the spanning tree algorithm uses the trench costs and fibre
costs to identify the cheapest way of joining the LEs to the PoC.

3.2.11 WriteOutResults

Location: Found in the ClusterToPOCs module

Purpose: This has two data types as arguments: (i) objGPOCData, which is
the data for the LEs that are PoCs by themselves (i.e. are either an
LAS or have so many SIOs to justify being a PoC – these have no
other LEs in the PoC area) and (ii) objInputData, which is the data
for the other LEs within the LAS.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 70

9995-203

3.2.12 Outputs of the Find PoCs algorithm

For each LE, the WriteOutResults subroutine writes out the following named ranges results of the
algorithm to the ‘Input Table’ worksheet:

Named range Column title (on the ‘Input Table’
worksheet)

Description

Is.LAS Is a LAS? Whether the LE is also the LAS (a
“Y” means yes, otherwise the
column is left blank)

PoC.ID PoC ID a number indicating an identifier
for the PoC that the LE is
associated with

PoC.Name PoC Name the name of the LE that is also the
corresponding PoC

Dist Distance to PoC the crow flies distance from the LE
to the PoC

Next.LE Next LE in the spanning tree the next LE which this LE will pass
through to reach its PoC

LE.Dist Trench Distance to Next LE the crow flies distance to the next
LE or PoC if connected directly

Fibre.Dist Fibre Distance to POC the distance to the PoC
considering intermediate LEs

Table 3.3: Outputs of the ‘Find PoC’ algorithm written to the ‘Input Table’ worksheet [Source:

Analysys]

For each PoC, the WriteOutResults subroutine writes out the following named ranges results to the
‘Input POCs’:

Named range Column title (on the ‘Input PoCs’
worksheet)

Description

Cluster.Centre.Lat ClusterCentre Latitude The latitude of the centre of the LE
cluster in the PoC area

Cluster.Centre.Long ClusterCentre Longitude The longitude of the centre of the
LE cluster in the PoC area

Number.LEs.In.POC Number of LE's in the POC The number of LEs that are in the
PoC cluster, determined by the
subroutine num_points_in_cluster
in the Clustering module

Table 3.4: Outputs of the ‘Find PoC’ algorithm written to the ‘Input POCs’ worksheet [Source:

Analysys]

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 71

9995-203

For each PoC, the subroutine also writes out the following named ranges results (found on the
‘Input POCs’ worksheet), which form the basis of inputs into the second part of the code, the
RunTSP algorithm:

Named range Column title (on the ‘Input
PoCs’ worksheet)

Description

Input.TSP.POC.ID POC Id An identifier for the PoC to which the LE is
associated

Input.TSP.POC.Name LE Id The name of the PoC (which is an LE name)

Input.TSP.Lat POC Latitude The latitude coordinate for the PoC

Input.TSP.Long POC Longitude The longitude coordinate for the PoC

Input.TSP.LAS LAS The parent LAS ID to the PoC

Number.Of.POCs Number of POCs in LAS The number of PoCs in the LAS area

Input.TSP.Is.a.LAS Is a LAS? Flag as to whether the PoC is also the LAS (a “Y”
means yes, otherwise the column is left blank)

Input.TSP.Num.SIOs SIOs The aggregate number of SIOs in the PoC area
(summed over all LEs in the PoC area)

Table 3.5: Outputs of the Find PoCs algorithm that feed into the RunTSP algorithm [Source:

Analysys]

3.3 RunTSP

The ‘travelling salesman problem’ (TSP) is a well-recognised problem in optimisation.

In its traditional form, the TSP considers the situation of a salesman who needs to find the least-
cost round-trip route between a number of cities – the route must visit each city exactly once, and
must end at the same city at which the route started.

It is employed in the Analysys cost model to determine the most efficient ring backhaul topology
between a group of PoCs.

However, the TSP algorithm has been extended beyond its traditional solution in order to enable
backhaul solutions to consider more than one ring. Either several separate rings can form, each
including the LAS as a node, or ‘parent’ rings (connecting to the LAS) can link ‘child’ rings back
to the LAS. Consequently, the additional problem of identifying which PoCs should belong to
which ring is incurred.

The RunTSP algorithm uses the following sequence:

• For each LAS area, the algorithm identifies to which ring cluster each PoC belongs.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 72

9995-203

• For those LAS areas where the number of PoCs is sufficiently small (up to
Num.POCs.GA.Threshold – see below), the algorithm performs an exhaustive search
considering every possible way in which the PoCs could be partitioned into ring clusters.

• Where the number of PoCs is greater than this threshold number, the algorithm uses a genetic
algorithm approach instead – an exhaustive search would be prohibitive in terms of processing
time.

– This genetic algorithm sets up an initial random “population”, each member of
which represents a different partitioning of the PoCs into ring clusters. That
population is then evolved – at each generation in the evolution and for each new
member in that generation, two members of the old population are selected with a
preferential bias towards those with the cheapest ring costs. These are thencrossed
(so the new member has some of the properties of one parent and the rest from the
other) and mutated to obtain some new properties. More details can be found in the
relevant sections below.

• Whichever method is used to select the partitioning, the same ‘travelling salesman’ algorithm
is then used within each ring cluster to identify the order in which those PoCs should be
joined.

– An exhaustive Branch and Bound implementation that builds up the test ring
along a search path, adding one PoC at a time, is used. If that ring exceeds the
current best upper cost bound, then that search path is rejected. The algorithm
proceeds along a new search path until either all search paths have been
exhaustively searched, or until a full-sized ring that is cheaper than the current best
cost bound is found. In the latter case, the best cost bound is set to be the newly
found cost; and the algorithm continues to proceed along the next search path.
Using this methodology, the algorithm exhaustively searches all of the possible
paths until it has found the optimal solution. More details can be found in the
relevant sections below.

The RunTSP code takes the outputs, as defined in Table 3.6, from the Find POCs algorithm as
input. In addition, it takes the following input parameters:

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 73

9995-203

Parameter Description

Max.POCs.Per.Ring The maximum number of PoCs allowed on any ring. Thus, if the number of
PoCs in any LAS area is greater than this threshold, we would need more than
one ring

Bridging.Nodes The number of nodes which bridge a child ring to a parent ring. Valid inputs are
1 or 2.

Num.POCs.GA.Threshold The maximum number of PoCs in an LAS area in which the algorithm would
calculate the optimal ring using an exhaustive search mechanism. If the number
of PoCs is above this threshold then a genetic algorithm is employed to find an
efficient ring1. Note that if the number of PoCs is less than or equal to
Max.POCs.Per.Ring then there is only one ring required – all the PoCs can fit on
it. Thus only the travelling salesman part of the algorithm to identify the order in
which these PoCs are joined needs to be implemented

GA.Num.Generations The number of generations to run when using a genetic algorithm to identify
efficient rings. The more generations, the more likely one is to find a more
efficient ring. However, the more generations, the longer the algorithm will take
to process

Table 3.6: Parameters required by the RunTSP algorithm [Source: Analysys]

The RunTSP algorithm runs through the following routines starting at RunTSP:

3.3.1 RunTSP

Location: Found in the RunTSP module

Purpose: This is the entry point and skeletal part of the RunTSP algorithm. It
calls the following routines:

• ClearOutputSheet – clears the output sheet ready to receive the
new results

• SetupInputParams–reads in the input parameters

• InitOutput – sets up the first row to start the output from

Then it loops through for each LAS area calling the following
routines:

• ClearTSPInputData – gets called for the objTSPInputData
object, clearing out the values. The object will contain the input
data

1 Whilst this method cannot guarantee an optimal solution, as it is not an exhaustive approach, it does employ optimisation algorithms

to check that a near-optimal (which may in fact be optimal) solution is generated.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 74

9995-203

• ReadLASInputs – reads in the input data for the LAS, setting up
the objTSPInputData object, which contains the input data

• RunThroughCombinations – runs through either (i) an
exhaustive search of all possible combinations of rings that
could be used in order to find the optimal ring; or (ii) sets of the
genetic algorithm to find the best ring that can find. It also
writes out the results.

3.3.2 ClearOutputSheet

Location: Found in the RunTSP module

Purpose: This subroutine clears the contents of all the named output ranges.

3.3.3 SetupInputParams

Location: Found in the RunTSP module

Purpose: This subroutine reads in the four input parameters
Max.POCs.Per.Ring, Bridging.Nodes, Num.POCs.GA.Threshold,
GA.Num.Generations.

3.3.4 InitOutput

Location: Found in the OutputTSPResults module

Purpose: This subroutine sets the first row of the output ranges to write to.

3.3.5 ClearTSPInputData

Location: Found in the RunTSP module

Purpose: This subroutine initialises the passed-in object, generally setting the
object’s values to zero. The passed-in object will be a
clsTSPInputData type, which will eventually contain the input data
required to run the TSP algorithm.

3.3.6 ReadLASInputs

Location: Found in the RunTSP module

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 75

9995-203

Purpose: This subroutine reads in all the data for an LAS area. It loops
through each and adds the PoC data to the objTSPInputData object.
Once it finishes looping, the object is then ready to be passed into
the processing stage of the algorithm.

3.3.7 RunThroughCombinations

Location: Found in the RunTSP module

Purpose: This is called with the objTSPInputData object passed in as an
argument. First it finds the maximum number of ring clusters that
we will consider using by calling getMaxRings

It tests the number of PoCs in the LAS area against
glMaxPOCsForExhaustiveSearch, which is the global variable
representing Num.POCs.GA.Threshold.

If it is less then it:

• First assigns all PoCs to Ring 1, then calls UseThisCombination
and then calls RecurseCombinations to find the optimal solution

Otherwise it:

• Calls RunGeneticAlgorithm to find a near-optimal solution

In either cases, when it returns from these calls it calls
RunForBestRings, which runs through the travelling salesman part
of the algorithm again but this time writing out the results.

3.3.8 GetMaxRings

Location: Found in the RunTSP module

Purpose: This subroutine determines the number of rings required for a given
number of PoCs and given value of glMaxPOCsPerRing (which
takes the value of the named range Max.POCs.Per.Ring)

3.3.9 UseThisCombination

Location: Found in the RunTSP module

Purpose: This subroutine takes the array lRings () as an argument, which
identifies which ring each PoC is assigned to in the current test ring.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 76

9995-203

It calls TestRingValidityBeforeSetup to determine the number of
rings required and to test whether the rings are valid (i.e. there
aren’t more than the maximum allowed number of PoCs on any ring
or less than the minimum number). If this returns False then a
solution for this combination is not followed. If this returns True,
then the algorithm creates an objTSPData object to hold the TSP
data and calls ClearTSPData to initialise its values. It then uses
lRings () along with the input data in objTSPInputData to set up
objTSPData by calling bolSetUpTSPData.

Having created the objTSPdata object, the subroutine then calls
TestRingValidityAfterSetup to test whether the rings are valid and, if
this returns True, then it then calls RunTheAlgorithm with the first
argument as False so that no results are written out.
RunTheAlgorithm identifies the best order to join up the PoCs given
the ring association for each PoC. It stores these results in the object
array objBestRings() and that includes the distance cost associated
with the setup. If the total distance cost is the best found so far for
this LAS area then the results are copied into the global object array
glBestRings(). Finally, the algorithm calls ClearBestRings to clear
out the memory used in creating objBestRings()

3.3.10 TestRingValidityBeforeSetup

Location: Found in the RunTSP module

Purpose: Firstly, this subroutine determines the number of rings (i.e. clusters)
needed for the array argument lRings() passed through, which says
which ring each PoC is assigned to in the current test ring. It then
determines which of these clusters contains the LAS node.

The subroutine then performs the tests. The ring validity test will
fail if one of the following is true:

• The number of PoCs in any cluster is larger than
glMaxPOCsPerRing (which represents Max.POCs.Per.Ring)

• If any cluster that does not contain the LAS and has the number
of PoCs in the cluster equal to glMaxPOCsPerRing. This is
because the cluster will have to be attached to the ring that
contains the LAS and thus the number of PoCs would then
exceed glMaxPOCsPerRing

• If the total number of PoCs across all clusters is larger than

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 77

9995-203

MinPOCsPerRing, but the number of PoCs in any one cluster is
less than MinPOCsPerRing (or less than that number minus 1 if
the cluster does not contain the LAS). Note MinPOCsPerRing
is defined as 3. This condition means that we will never have a
cluster smaller than this size if we could join them into bigger
clusters

3.3.11 TestRingValidityAfterSetup

Location: Found in the RunTSP module

Purpose: This subroutine tests the validity of each ring (i.e. cluster) in the
solution. A candidate ring fails if any of the following are true:

• The number of PoCs in any cluster is larger than
glMaxPOCsPerRing (which represents Max.POCs.Per.Ring)

• If the total number of PoCs across all clusters is larger than
MinPOCsPerRing, but the number of PoCs in any one cluster is
less than MinPOCsPerRing (or less than that number minus 1 if
the cluster does not contain the LAS).

3.3.12 ClearTSPData

Location: Found in the RunTSP module

Purpose: This clears out and initialises the objTSPData object ready to be
populated

3.3.13 SetUpTSPData

Location: Found in the RunTSP module

Purpose: This takes lRings () as an argument, which says which ring each
PoC is assigned to in the current test ring. It calculates the number
of clusters (i.e. rings) required by the lRings() array. Then copies the
longitude and latitude from objTSPInputData. It determines which
cluster has the LAS and also the number of PoCs in each cluster
(i.e. ring). Finally, it calls bolJoinClusterRings, which joins all the
other rings up to the ring that contains the LAS

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 78

9995-203

3.3.14 bolJoinClusterRings

Location: Found in the RunTSP module

Purpose: This loops through each cluster (i.e. ring), lCluster, and determines
whether it contains the LAS. If it does, then there is nothing more to
do with this cluster here. Otherwise, it looks through all the PoCs in
all the clusters that do contain the LAS and determines the PoC that
is nearest to any of the PoCs in lCluster. It then adds this nearest
PoC to the list of PoCs in lCluster and sets this PoC to be the
bridging PoC (the one that joins the two rings). If it turns out that
this bridging PoC is the LAS, then lCluster now contains the LAS.
Thus it may have been better for a previous cluster to have joined to
this lCluster rather than what it has joined to. Hence, we clear out
the bridging PoCs of the previous clusters and start
bolJoinClusterRings again knowing that lCluster is now a cluster
containing the LAS and has been joined

3.3.15 RunTheAlgorithm

Location: Found in the RunTSP module

Purpose: Creates a new worksheet and chart (by calling CreateSheet and
CreateChart respectively) ready to output the results for that
particular LAS. It then loops through each cluster (i.e. ring)
performing the following tasks:

• Calls SetUpInputs to set up the distances between pairs of PoCs
and the order in which to consider the PoCs

• Calls FindInitialBound, which uses a simple dynamic
programming technique to get an initial upper bound for the
best ring solution – meaning the best order in which to join the
ring’s nodes (PoCs)

• Calls InitBranchPoints which sets up the identifiers for test
rings that form branch points in the Branch and Bound
algorithm that is employed to solve the travelling salesman
problem. See the section InitBranchPoints below for more
details

• Sets up memory for the 3 initial test rings of size 4. Note that a
size-3 ring (one with 3 nodes) is unique in how it can be ordered
since we assume that a link from A to B is the same as a link

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 79

9995-203

from B to A. A ring of size 4 has 3 possible ways to join the
nodes up. In general, a ring of size n has (n-1)!/2 possible
combinations

• Calls FindShortestRing, which runs through the Branch and
Bound method for solving the travelling salesman problem

• Copies the results of the best ring order into the
objBestRings(lCluster) object, which represents the best ring
order solution for that cluster (collection of PoCs)

• If the bolOutputRings flag is set to True, calls OutputARing
which outputs the results for the ring cluster. Note that this
argument is passed into the function and is only passed in as
True once we know the best way to partition the PoCs into ring
clusters. That is, only once we know which ring cluster each
PoC should belong to. For LAS areas with 8 or fewer PoCs then
all PoCs belong to the same cluster, so we can be sure we have
the best partition

Finally, if bolOutputRings is set to True then we call
OutputFinalResults which provides the summary over all the ring
clusters in the LAS area

3.3.16 CreateSheet

Location: Found in the OutputTSPResults module

Purpose: Creates a new worksheet with the given name (the LAS area). Or, if
that worksheet already exists, then CreateSheet clears the sheet

3.3.17 CreateChart

Location: Found in the OutputTSPResults module

Purpose: Creates a new chart in the new worksheet created above in
CreateSheet. Or, if that chart already exists, then CreateChart clears
the chart

3.3.18 SetUpInputs

Location: Found in the InitialiseTSP module

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 80

9995-203

Purpose: This calls GetInitialDistances to calculate the distance costs
between every pair of PoCs in the ring cluster. It then calls
SetUpInitialRingAndReorderSites which re-orders the PoCs in
memory in an attempt to improve the efficiency of the Branch and
Bound algorithm. It also sets up the initial ring of 3 PoCs formed
from the first 3 PoCs in the re-ordered list

3.3.19 GetInitialDistances

Location: Found in the InitialiseTSP module

Purpose: Calculates the distance costs between every pair of PoCs in the ring
cluster

3.3.20 SetUpInitialRingAndReorderSites

Location: Found in the InitialiseTSP module

Purpose: This loops through to find the 3 PoCs that form the longest triangle.
It sets these 3 PoCs as the initial ring in the algorithm as this makes
for an efficient algorithm. It then calls ReorderSites to re-order the
rest of the PoCs into an efficient order; followed by
SetUpReorderedDistances to update the distance cost matrix to
reflect the re-ordering of the PoCs

3.3.21 ReorderSites

Location: Found in the InitialiseTSP module

Purpose: Re-orders the PoCs so that the first 3 form the largest triangle. The
PoCs are then ordered in descending order in terms of distance to a
PoC on that triangle

3.3.22 SetUpReorderedDistances

Location: Found in the InitialiseTSP module

Purpose: Having re-ordered the PoCs, we need the distance matrix to reflect
this re-ordering so that its elements refer to the correct PoCs

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 81

9995-203

3.3.23 FindInitialBound

Location: Found in the ShortestRing module

Purpose: This uses a quick dynamic programming technique to find a good
first solution to the travelling salesman problem. This solution is
used to form an initial upper bound to the overall cost of the ring –
we know any better solution must have a lower cost. The dynamic
programming technique employed here takes the initial ring of 3
PoCs as the size-3 “current ring”. It then takes the next PoC from
the re-ordered list and considers where it should be added to the
current ring. There are 3 possibilities – (i) between the 1st and 2nd
PoC, (ii) between the 2nd and 3rd PoC, or (iii) between the 3rd and 1st
PoC. It places the new (4th PoC) in the position that minimises the
total ring cost of the size-4 ring to form the new size-4 current ring.
It then takes each PoC in turn and considers every possible position
with the current ring. Finally, once all PoCs have been added, we
have the dynamic programming solution. Note that, in general, this
will not be optimal since an early decision on where to place PoC 5,
for instance, may mean higher additional costs when we add a later
PoC (say PoC 7) than if PoC 5 had been placed elsewhere.
Nevertheless, it will form a good solution and provides a useful
upper bound to the costs

It is used within the FindInitialBoundroutine in the following
manner:

• Forms the initial size-3 ring from the first 3 PoCs

• Calls FindDPBest to find the best dynamic programming
solution for the re-ordered PoCs

We then trya few other dynamic programming solutions (calling
FindDPBest each time) with different orderings of PoCs to see if we
can improve on the initial bound

3.3.24 FindDPBest

Location: Found in the ShortestRing module

Purpose: Finds the best result from the dynamic programming method of
adding 1 PoC at a time using the PoC ordering passed in by the
array bPermuteOrder(). Note that the result depends on the order of
the PoCs and so is unlikely to be optimal. Having formed the initial

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 82

9995-203

size-3 ring (passed into this routine), loops through the rest of the
PoCs in the bPermuteOrder order and at each stage:

• Loops through all possible positions where the new PoC could
be added, initially between PoCs 1 and 2. At each loop:

o Calculates the distance cost “saved” – i.e. initially
the distance between PoC1 and PoC2 since there is
no longer a direct join between these 2 PoCs if we
are adding the new PoC in between

o Adds on the two parts to the extra distance costs –
so initially these parts are (i) the extra distance cost
between PoC1 and the new PoC and (ii) the extra
distance cost between PoC2 and the new PoC

• Inserts the new PoC in the position where the extra distance cost
added less the distance cost saved is the smallest (i.e. the
smallest net addition to the distance cost) and proceeds to the
next PoC in the bPermuteOrder order

Once we have processed all the PoCs, we have the solution using
the dynamic programming method and we set the best ring so far to
be this ring order and set the initial upper bound to be the associated
distance cost

3.3.25 InitBranchPoints

Location: Found in the ShortestRing module

Purpose: This sets out the branch points in the search tree. The way the
Branch and Bound algorithm works is to build up the full-size ring
from an initial size-3 ring adding a PoC at each stage. Potentially, it
will consider every possible combination of ways to order the full-
size ring. However, there is an inequality we can use that means we
do not need to search through every possible combination. The
inequality is that any size-(n+1) ring will always have at least as
much total distance cost as a size-n ring provided we keep the n
PoCs in the same order in the ring. That is, adding a new PoC
anywhere between two existing PoCs in the ring cannot reduce the
distance cost. This is the same as saying the net addition to the
distance cost in the FindDPBest routine cannot be negative

Using this inequality, once we have identified a size-n ring that

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 83

9995-203

exceeds the bound (the cost of the best full solution found so far),
there is no point in proceeding along that branch because we can
only add extra costs to it by adding on the rest of the PoCs. We
cannot reduce the costs. Thus we should give up on that branch and
proceed to the next branch point. See the FindShortestRing sub-
section for more details on the algorithm

The InitBranchPoints sets out those branch points. Specifically, we
have an enumeration of the rings being considered and
InitBranchPoints stores the enumeration of the branch points in the
global array giBranchPoints()

The search tree can be seen in the following diagram:

 ----1-----4----8----13.....etc
 ----9
 ---10
 ---11
 ---12
 -----5----8
 ----9
 ---10
 ---11
 ---12
 -----6...etc
 -----7
 ----2-----4
 -----5
 -----6
 -----7
 ----3-----4
 -----5
 -----6
 -----7

Table 3.7: Example

search tree for Branch

and Bound method

[Source: Analysys]

The numbers in the diagram represent the enumeration of the rings. The rings in the first column
represent the unique combinations for 4 POCs, the second column for 5 POCs, the third column
for 6 POCs and so on. The top row describes rings being developed starting with one of the three
possible combinations of 4 POCs, Ring 1. Reading across the top row:

• Ring 4 is formed by adding a single PoC to Ring 1 between Ring 1’s first and second nodes.
• Ring 8 is formed by adding a single PoC to Ring 4 between its first and second nodes
• Ring 13 is formed by adding a single POC to Ring 8 between its first and second node etc.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 84

9995-203

If Ring 8 exceeds the cost bound, then all subsequent rings developed from it will also exceed the
cost bound. Therefore, there is no need to consider any more of the rings developed along that
specific search path. The top row are said to be the branch points since they are the first rings
considered at each size.

Columns in the diagram describe all combinations of a fixed number of POCs into unique rings.
For example, reading down the third column from the top of the diagram:

• ring 9 represents adding a single PoC to Ring 4 between its second and third nodes
• ring 10 represents adding a PoC to Ring 4 between the third and fourth nodes
• ring 11 represents adding a PoC to Ring 4 between the fourth and fifth nodes
• ring 12 represents adding a PoC to Ring 4 between the fifth and first nodes.

Having generated Rings 8–12 from Ring 4 and considered all the necessary full-size rings that can
be formed from them, we can re-use the memory assigned to these rings. Thus, five new rings
numbered 8–12 are constructed from Ring 5, which will be different to the previous rings labelled
8 through 12. This principle of reuse is used throughout the algorithm and requires significantly
less memory. For example, if only rings containing up to six POCs are required, then memory for
only 12 rings is required at any one time.

3.3.26 FindShortestRing

Location: Found in the ShortestRing module

Purpose: This runs through the Branch and Bound algorithm for solving the
travelling salesman problem:

• We start off with a given PoC order and add the PoCs one at a
time in this order. So the initial ring of size 3 is made up of
PoCs 1, 2 and 3. Rings of size 4 are made up of PoCs 1, 2, 3 and
4 but may be in any of three orders – 4, 1, 2, 3 (Ring 1); or 1, 4,
2, 3 (Ring 2); or 1, 2, 4, 3 (Ring 3). Note the labelling of the
rings Ring1, Ring2 and Ring3. This number forms the array
argument inside the objTestRings() object.

• Note cyclic and mirror symmetry means that these 3 rings cover
all possible rings of size 4 made up of the first 4 PoCs.

• We form a tree of Rings 1, 2 and 3 investigating all three
possible rings of size 4. We then go back a BranchPoint, so
back to Ring 1 in order to consider a search path from Ring 1.

• From Ring 1, we form a new subtree of Rings 4, 5, 6, 7 from
that BranchPoint (Ring 1 is a branch point) investigating all
four possible rings of size 5 (from the given 4-ring – Ring 1;

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 85

9995-203

and given PoC order), then go back a BranchPoint (so back to
Ring 4).

• We then form a new subtree of Rings 8, 9, 10, 11, 12 from that
BranchPoint for all five possible rings of size 6 (from the given
5-ring – Ring 4; and given PoC order) then go back a
BranchPoint (so back to Ring 8), etc.

• Suppose we only need to go up to rings of size 7 (assuming
there are only 7 PoCs in this cluster), then we need only go up
to Ring 18 in this list and thus only store 18 rings at any one
time.

• Once we have processed the full-sized size-7 rings, Rings 13,
14, 15, 16, 17, 18 (formed from Ring 8), we then go back to
Ring 9 and form a new set of Rings 13, 14, 15, 16, 17, 18
starting from Ring 9 as opposed to Ring 8.

• We then do the same but starting from Ring 10, and again
starting from Ring 11 and once more starting from Ring 12.

• Then we go back to Ring 5 (as opposed to Ring 4) and form a
new set of Rings 8, 9, 10, 11, 12 from which to go from to form
the new sets of Rings 13, 14, 15, 16, 17, 18.

• Then go from Ring 6 and Ring 7.

• Then go back to Ring 2.

• Then finally go from Ring 3.

Note that if any ring exceeds the current best cost bound then there
is no point considering any further rings along that branch as they
will also exceed the best cost bound. Contrariwise, any full-size
rings that have lower distance cost than the current best cost bound
are stored and the best cost bound set to that ring’s distance cost.

The algorithm is employed in the code in the following manner:

• Copies the initial size-3 ring into the objTestRings() array for
Rings 1, 2 and 3. Then for each of these in turn, call AddBranch
to add on the 4th PoC in the appropriate position for that ring.

• If there are only 4 PoCs then finds which of those 3 rings above
is the best.

• Otherwise, calls the routine RecurseThroughTree to recurse

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 86

9995-203

through the search tree in accordance with the algorithm above.

3.3.27 AddBranch

Location: Found in the ShortestRing module

Purpose: Takes an existing ring, and adds on the next PoC to it in the stated
position. Updates the distance cost and kills off the branch (by
setting the objRing’s bolActive flag to False) if the distance cost
exceeds the current best cost bound. On the other hand, if the ring is
now full-size and its cost is lower then the current best cost bound,
it stores the ring in objBestRing and updates the current best cost
bound to be the cost of the ring

3.3.28 RecurseThroughTree

Location: Found in the ShortestRing module

Purpose: This is the core of the Branch and Bound algorithm. It employs a
recursion technique to search through all possible ring combinations
that have the potential to be better than the current best ring
solution. RecurseThroughTree looks to see whether the branch from
the current ring is active and if so, it copies the current ring into
each of a new set of rings enumerated along the branch (see
InitBranchPoints for more details). Then to each of these new rings,
it calls AddBranch, which adds a PoC to the ring in the appropriate
position. If this new ring survives (i.e. its cost is still less than the
current best cost bound), it calls RecurseThroughTree to recurse
from this new ring

3.3.29 OutputARing

Location: Found in the OutputTSPResults module

Purpose: This calculates the capacity requirements of the ring. The capacity
requirement is the sum of the capacity at each PoC on the ring
except for the LAS PoC, plus the capacity at any PoC on any other
rings that are joined to this ring to get to the LAS.

It then updates the sheet, created in RunTheAlgorithm that is named
after the current LAS, with the results of the best ring found for that

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 87

9995-203

cluster. Furthermore, it updates the chart (by adding the data and
calling FormatChartSeries) on that sheet to display these results.
Finally, it add the results to the output table in the ‘Output PoCs’
worksheet

3.3.30 OutputFinalResults

Location: Found in the OutputTSPResults module

Purpose: This updates the sheet, created in RunTheAlgorithm that is named
after the current LAS, with an overall summary for all the ring
clusters in that LAS area. For example, outputting the total distance
cost of all the best rings

3.3.31 FormatChartSeries

Location: Found in the OutputTSPResults module

Purpose: Sets the line size and format of the output chart series. If we’re
adding the first series, then also calls FormatTheChart to format the
whole chart

3.3.32 FormatTheChart

Location: Found in the OutputTSPResults module

Purpose: Formats the output chart. For example, removing gridlines and the
legend

3.3.33 ClearBestRings

Location: Found in the RunTSP module

Purpose: Clears out the memory of the objBestRings() object ready to be used
for another combination of partitioning the PoCs into ring clusters

3.3.34 RecurseCombinations

Location: Found in the RunTSP module

Purpose: This creates the partitioning of the PoCs into rings, forming the

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 88

9995-203

array lRings() which stores this partitioning. It proceeds in the
following manner:

• Loops lPOCToChange through from the last PoC back to the
passed-in argument lLastPOCToChange

• At each stage in that loop, loops lRingForPOCToChange from
2 up to the maximum number of rings (obtained earlier in
RunThroughCombinations)

• Within this inner loop:

o Sets the lLastPOCToChange PoC to be
lRingForPOCToChange – the cluster ring that it
has been incremented to be in.

o Sets all later PoCs to be in ring cluster 1

o Calls UseThisCombination to test out this
partitioning to see if it improves upon the best rings
found so far

o Calls RecurseCombinations with lPOCToChange +
1 passed in as lLastPOCToChange

For example, let us suppose there are 3 rings to assign 6 PoCs to.
(Note this is unrealistic since 6 PoCs would fit on one ring, but it is
useful for illustration.) We start off assigning them all to Ring 1
(which we can represent by the series 111111) and call
UseThisCombination on that. Then we increment the last PoC to 2.
So the PoCs are assigned to rings according to the series 111112
and again call UseThisCombination. We increment it again to get
the series 111113 each time calling UseThisCombination. Then the
last PoC is at the maximum number of rings, so we go to the next
PoC back and set all later PoCs to 1. Thus we get to 111121. The
series continues as follows:

• 111122
• 111123
• 111131
• 111132
• 111133
• 111211
• 111212
• 111213
• 111221

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 89

9995-203

• 111222
• 111223
• 111231
• 111232
• 111233
• 111311

etc.

Eventually, all possible partitions are considered. Note that many of
these partitions will not be valid – for example they may have too
many PoCs in any one ring cluster. These will be rejected in the call
to TestRingValidity inside UseThisCombination

3.3.35 RunGeneticAlgorithm

Location: Found in the GeneticAlgorithmForRings module

Purpose: This is called from RunThroughCombinations when the number of
PoCs in the LAS is more than glMaxPOCsForExhaustiveSearch. In
these cases, an exhaustive search would be prohibitive upon
processing time and a genetic algorithm is employed to find a near-
optimal solution

This routine proceeds as follows:

• Calls SeedPopulation to set up an initial “population” of test
partitions of PoCs into ring clusters. Each member of the
population represents a partitioning of the PoCs into ring
clusters.

• Calls TestPopulation to run through each of these partitions to
find the best possible rings for each partition and records their
results. If any of these results improve upon the best result
found so far across all partitions tested in terms of least distance
cost, then it records it

Loops through “generations” from 1 up to glNumGenerations – the
number for GA.Num.Generations. In each generation:

• Calls SortThePopulation to order the population, putting the
best partitions first and the worst ones last. The best partitions
are those for whose best rings incur the least distance cost

• Calls SeedPopulation to set up a few new test partitions –

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 90

9995-203

although this time the seeded population is only part of the full
population

• Calls MergePopulation to produce “offspring” preferentially
from the better partitions found in the previous generation

• Calls MutatePopulation to make some small random
adjustments to the population

• Calls TestPopulation to run through each of the partitions in the
new population, again finding the best possible rings for each
partition, recording the results and updating the best solution
where appropriate

In each generation, there will be POPULATIONSIZE (=100)
members in total, NEWRANDOMS (=10) of these will be newly
seeded members and the rest will be from merging two parents

Once we have run through GA.Num.Generations, we use the best
partitioning found so far to output as the results. Note that this may
or may not be the optimal solution but should always be a very good
solution

3.3.36 SeedPopulation

Location: Found in the GeneticAlgorithmForRings module

Purpose: Sets the population of PoC partitions for the genetic algorithm. Each
member of the population represents a partitioning of the PoCs into
ring clusters. These are seeded at random. Note that arguments
passed in to this function determine which members of the
population are seeded. The first time it is called, all members of the
population are seeded. On later calls, only some members are
seeded – others are formed by merging and mutating existing
members of the population

3.3.37 TestPopulation

Location: Found in the GeneticAlgorithmForRings module

Purpose: Runs through each member of the population and calls
UseThisCombination on that combination. UseThisCombination
tests whether the partition is valid (e.g. the number of PoCs in any
ring cluster does not exceeded the maximum permitted), then

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 91

9995-203

identifies the best order of PoCs in each ring represented by the
partitioning and determines the associated distance cost

3.3.38 SortThePopulation

Location: Found in the GeneticAlgorithmForRings module

Purpose: Orders the population according to which partition can have the
cheapest set of rings formed for it. It calls the routine SortTheScores
to perform this task on the temporary array lPopulationOrder(). It
then updates the ring partitioning arrays lMemberRings() to reflect
this re-ordering

3.3.39 SortTheScores

Location: Found in the Sort module

Purpose: Uses the standard Quicksort method to order the scores (cheapest
way of forming the rings given the partition). It calls the
ScoresQuickSort routine to do this

3.3.40 ScoresQuickSort

Location: Found in the Sort module

Purpose: Recursively sorts scores by swapping points from the lower half
with points from the upper half of the population when a point in
the lower half scores higher than the medium value and a point in
the upper half scores lower than the medium value. It then recurses
within each of these halves until all the points are sorted. It uses the
routine SwapMembers, which just swaps two points

3.3.41 SwapMembers

Location: Found in the Sort module

Purpose: Swaps two points within an array

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 92

9995-203

3.3.42 MergePopulation

Location: Found in the GeneticAlgorithmForRings module

Purpose: This runs down through the new generation population members
from POPULATIONSIZE - NEWRANDOMS to REPRODUCERS
+ 1. At each stage in the loop, two random parent members from the
top scoring REPRODUCERS number of the previous generation
population are used to generate the partition for the new generation
population member

It then runs down the new generation population members from
REPRODUCERS To 1 counted by lMember, only selecting parents
from the top scoring lMember number of the previous generation
population

In this way, higher-scoring members are preferentially selected for
being used to form members in the next generation

It calls MergeTwoParents in order to produce the next generation
member from the two current generation parents

3.3.43 MergeTwoParents

Location: Found in the GeneticAlgorithmForRings module

Purpose: This takes two members from an existing population and produces
one new member for the next generation. In the “parent” members,
each PoC has been assigned to a ring cluster. In the new member,
for each PoC, there is a 50-50 chance that it will take the first
parent’s ring cluster assignment and otherwise will take that of the
second parent

3.3.44 MutatePopulation

Location: Found in the GeneticAlgorithmForRings module

Purpose: This adds some more random element into the process by adjusting
a random number of PoC cluster ring assignments. For each
member of the population, it will adjust a random number up to
MAXPOPMUTATE of the PoCs. When it adjusts them, it sets the
new cluster ring that the PoC is assigned to be to a random number
up to the maximum number of cluster rings

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 93

9995-203

3.3.45 RunForBestRings

Location: Found in the RunTSP module

Purpose: Whichever method is used from RunThroughCombinations, we end
up calling RunForBestRings. At this stage, we have either found the
optimal rings for the sets of PoC by using an exhaustive search
mechanism through RecurseCombinations or we have found a very
good and still possibly optimal solution through
RunGeneticAlgorithm. We then call RunForBestRings to run
through this best solution, but this time to output the results as we
go. Hence this routine calls SetUpTSPData as before but using the
best rings found already, then calls RunTheAlgorithm again but this
time with the first argument set to True so it knows to output the
results. Finally, it calls ClearBestRings to clear out the memory
used by objBestRings()

3.3.46 Outputs of the RunTSP algorithm

The RunTSP algorithm produces the following outputs in the ‘Output PoCs’ worksheet:

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 94

9995-203

Named range Column title (on the ‘Output
PoCs’] worksheet)

Description

TSP.POC.ID POC Id An identifier for the PoC

TSP.POC.Name POC Name The name of the PoC (which is an LE name)

TSP.Lat POC Latitude The latitude coordinate for the PoC

TSP.Long POC Longitude The longitude coordinate for the PoC

TSP.LAS LAS The parent LAS ID to the PoC

Ring Ring An identifier for the ring on which the PoC
should be a member

TSP.Num.POCs Number of POCs in LAS The number of PoCs in the LAS area

TSP.Is.a.LAS Is a LAS? Flag as to whether the PoC is also the LAS (a
“Y” means yes, otherwise the column is left
blank)

Bridge Bridging Node Flag as to whether the PoC is also on the
Parent ring (connects to a LAS) (a “Y” means
yes, otherwise the column is left blank). Note
that such bridging nodes appear more than
once in the outputs since they appear for each
ring they are on. The “Y” will appear in the
column for the entry representing the child
ring.

In addition, the node representing the LAS will
appear as a bridging node on one (but only
one) of the rings connecting to the LAS.

SIOs SIOs The aggregate number of SIOs in the PoC
area (summed over all LEs in the PoC area)

TSP.Next.Node Next Node The next node (PoC) along the ring that this
PoC gets joined to

TSP.Dist.To.Next.Node Dist To Next Node The distance to the next PoC that the PoC is
joined

Ring.Joined Ring Joined To Where there are Child rings, the ring joined
indicate the Parent ring of the Child ring

In.Las.Ring Is In LAS Ring Flag as to whether the PoC is a Parent ring
(contains the LAS)

SDH.Transmission.Capa
city

SDH Transmission Capacity The capacity that must be sustained at the
PoC. If the ring it is on contains the LAS, then
the “SDH.Transmission.Capacity” is
calculated as the sum of the SIOs in the LAS
area at all the PoCs, excluding the LAS.
Otherwise it is just the sum of the SIOs in the
PoC’s ring, excluding the bridging node

SDH.Transmission.Capa
city.Formula

SDH Transmission Capacity
Formula

The “SDH.Transmission.Capacity” output as a
formula so that it is updated if the number of
SIOs changes

Table 3.8: Table outputs of the RunTSP algorithm [Source: Analysys]

In addition, for each LAS area, a new worksheet is generated. In each worksheet, there is:

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 95

9995-203

Title Description

Total number of POCs The number of PoCs in the LAS area

Total number of Nodes The number of PoCs in the LAS area but double counting those
that form bridging nodes (join two rings together)

Total Cost of All Rings The distance cost associated with all the rings in the LAS area

Time Taken The time taken to perform the calculation for this LAS area

Table 3.9: Worksheet summary outputs of the RunTSP algorithm [Source: Analysys]

Then for each ring in each LAS area, the following outputs are provided:

Title Description

Ring The identifier for the ring

Number of Sites The number of PoCs in the ring

Cost of Ring The distance cost associated with the ring

Optimal Node Order The order in which the PoCs should be joined in the ring

Node An identifier for the Node

Latitude The latitude of the PoC

Longitude The longitude of the PoC

Site Capacity This is set to 1

Stored Node The re-ordered numbering of the Nodes used in the algorithm and
can be ignored. It is useful for debugging the algorithm

POC ID The identifier for the PoC that the Node corresponds to

POC Name The name of the PoC

LAS Marked next to the nodes that represent the LAS

Table 3.10: Worksheet ring outputs of the RunTSP algorithm [Source: Analysys]

3.4 Other routines

The longitude / latitude distance measure used throughout the algorithms for the core network are
executed by the functions calc_dist_between_two_points and calc_dist_between_two_DblPoints.
Both functions take the coordinates (LongA, LatA) and (LongB, LatB) of two points as inputs and
return the spherical distance D between them by the formula:

() () () ()
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

∗
−

∗
−

∗+
−

∗
−

∗∗=
180180

90

180

90

180

90

180

90
cos

LongBLongA
π*Cos

LatB
π*Sin

LatA
πSin

LatB
π*Cos

LatA
πCosARD

where R is the radius of the Earth.

Both of these functions can be found in the Clustering module for the core routine.

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 96

9995-203

The following routines used in this code have almost identical equivalents described in section 2,
as they also form part of the geoanalysis and access network module. The mapping of the two sets
of subroutines is shown below in Table 3.11.

Location Core routine Equivalent access routine

Divisive_clustering DivisiveClustering

AllocatePointToCluster AllocatePointToCluster

simple_reassignment SimpleReassignment

Swap Swap

full_optimisation FullOptimisation

initialise_cluster_allocations InitialiseClusterAllocations

initialise_parent_capacity InitialiseParentCapacity

cal_maxd_in_P CalSquareMaxDInP

cal_unweighted_centre CalUnweightedCentre

choose_first_child_member ChooseFirstChildMember

cal_total_distance CalcTotalDist

Clustering module

write_cluster_results WriteClusterResults

construct_tree ConstructTree

identify_attached_and_unattached_points IdentifyAttachedAndUnattachedPoint
s

test_add_unattached_point_to_attached_poin
t

AverageCostPerLine

add_to_edge_list AddToEdgeList

add_cheapest_in_edge_list_to_objEdges AddCheapestEdgeInListToObjEdges

StoreRoutes StoreRoutes

GetTotalDistance GetTotalDistance

setup_DistanceMatrix SetupGdDistanceMatrix

SpanningTree
module

setup_points_in_cluster SetupPointsInCluster

Table 3.11: Other routines documented in the “Script for the access network algorithms” [Source:

Analysys]

 Description of the Visual Basic used in the fixed LRIC model – Version 2.0 | 97

9995-203

